ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal paths on the road network as directed polymers

79   0   0.0 ( 0 )
 نشر من قبل Alexandre Solon
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the statistics of the shortest and fastest paths on the road network between randomly sampled end points. To a good approximation, these optimal paths are found to be directed in that their lengths (at large scales) are linearly proportional to the absolute distance between them. This motivates comparisons to universal features of directed polymers in random media. There are similarities in scalings of fluctuations in length/time and transverse wanderings, but also important distinctions in the scaling exponents, likely due to long-range correlations in geographic and man-made features. At short scales the optimal paths are not directed due to circuitous excursions governed by a fat-tailed (power-law) probability distribution.

قيم البحث

اقرأ أيضاً

66 - Pascal Grange 2020
We consider the Larkin model of a directed polymer with Gaussian-distributed random forces, with the addition of a resetting process whereby the transverse position of the end-point of the polymer is reset to zero with constant rate $r$. We express t he average over disorder of the mean time to absorption by an absorbing target at a fixed value of the transverse position. Thanks to the independence properties of the distribution of the random forces, this expression is analogous to the mean time to absorption for a diffusive particle under resetting, which possesses a single minimum at an optimal value $r^ast$ of the resetting rate . Moreover, the mean time to absorption can be expanded as a power series of the amplitude of the disorder, around the value $r^ast$ of the resetting rate. We obtain the susceptibility of the optimal resetting rate to disorder in closed form, and find it to be positive.
We study sums of directed paths on a hierarchical lattice where each bond has either a positive or negative sign with a probability $p$. Such path sums $J$ have been used to model interference effects by hopping electrons in the strongly localized re gime. The advantage of hierarchical lattices is that they include path crossings, ignored by mean field approaches, while still permitting analytical treatment. Here, we perform a scaling analysis of the controversial ``sign transition using Monte Carlo sampling, and conclude that the transition exists and is second order. Furthermore, we make use of exact moment recursion relations to find that the moments $<J^n>$ always determine, uniquely, the probability distribution $P(J)$. We also derive, exactly, the moment behavior as a function of $p$ in the thermodynamic limit. Extrapolations ($nto 0$) to obtain $<ln J>$ for odd and even moments yield a new signal for the transition that coincides with Monte Carlo simulations. Analysis of high moments yield interesting ``solitonic structures that propagate as a function of $p$. Finally, we derive the exact probability distribution for path sums $J$ up to length L=64 for all sign probabilities.
76 - Victor Dotsenko 2016
The asymptotic analytic expression for the two-time free energy distribution function in (1+1) random directed polymers is derived in the limit when the two times are close to each other
In this paper in terms of the replica method we consider the high temperature limit of (2+1) directed polymers in a random potential and propose an approach which allows to compute the scaling exponent $theta$ of the free energy fluctuations as well as the left tail of its probability distribution function. It is argued that $theta = 1/2$ which is different from the zero-temperature numerical value which is close to 0.241. This result implies that unlike the $(1+1)$ system in the two-dimensional case the free energy scaling exponent is non-universal being temperature dependent.
We investigate the statistical properties of interfering directed paths in disordered media. At long distance, the average sign of the sum over paths may tend to zero (sign-disordered) or remain finite (sign-ordered) depending on dimensionality and t he concentration of negative scattering sites $x$. We show that in two dimensions the sign-ordered phase is unstable even for arbitrarily small $x$ by identifying rare destabilizing events. In three dimensions, we present strong evidence that there is a sign phase transition at a finite $x_c > 0$. These results have consequences for several different physical systems. In 2D insulators at low temperature, the variable range hopping magnetoresistance is always negative, while in 3D, it changes sign at the point of the sign phase transition. We also show that in the sign-disordered regime a small magnetic field may enhance superconductivity in a random system of D-wave superconducting grains embedded into a metallic matrix. Finally, the existence of the sign phase transition in 3D implies new features in the spin glass phase diagram at high temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا