ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive quadrature schemes for Bayesian inference via active learning

355   0   0.0 ( 0 )
 نشر من قبل Fernando Llorente Fern\\'andez
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerical integration and emulation are fundamental topics across scientific fields. We propose novel adaptive quadrature schemes based on an active learning procedure. We consider an interpolative approach for building a surrogate posterior density, combining it with Monte Carlo sampling methods and other quadrature rules. The nodes of the quadrature are sequentially chosen by maximizing a suitable acquisition function, which takes into account the current approximation of the posterior and the positions of the nodes. This maximization does not require additional evaluations of the true posterior. We introduce two specific schemes based on Gaussian and Nearest Neighbors (NN) bases. For the Gaussian case, we also provide a novel procedure for fitting the bandwidth parameter, in order to build a suitable emulator of a density function. With both techniques, we always obtain a positive estimation of the marginal likelihood (a.k.a., Bayesian evidence). An equivalent importance sampling interpretation is also described, which allows the design of extended schemes. Several theoretical results are provided and discussed. Numerical results show the advantage of the proposed approach, including a challenging inference problem in an astronomic dynamical model, with the goal of revealing the number of planets orbiting a star.



قيم البحث

اقرأ أيضاً

Adaptive Bayesian quadrature (ABQ) is a powerful approach to numerical integration that empirically compares favorably with Monte Carlo integration on problems of medium dimensionality (where non-adaptive quadrature is not competitive). Its key ingre dient is an acquisition function that changes as a function of previously collected values of the integrand. While this adaptivity appears to be empirically powerful, it complicates analysis. Consequently, there are no theoretical guarantees so far for this class of methods. In this work, for a broad class of adaptive Bayesian quadrature methods, we prove consistency, deriving non-tight but informative convergence rates. To do so we introduce a new concept we call weak adaptivity. Our results identify a large and flexible class of adaptive Bayesian quadrature rules as consistent, within which practitioners can develop empirically efficient methods.
181 - Daniel Yekutieli 2011
We address the problem of providing inference from a Bayesian perspective for parameters selected after viewing the data. We present a Bayesian framework for providing inference for selected parameters, based on the observation that providing Bayesia n inference for selected parameters is a truncated data problem. We show that if the prior for the parameter is non-informative, or if the parameter is a fixed unknown constant, then it is necessary to adjust the Bayesian inference for selection. Our second contribution is the introduction of Bayesian False Discovery Rate controlling methodology,which generalizes existing Bayesian FDR methods that are only defined in the two-group mixture model.We illustrate our results by applying them to simulated data and data froma microarray experiment.
We introduce inference trees (ITs), a new class of inference methods that build on ideas from Monte Carlo tree search to perform adaptive sampling in a manner that balances exploration with exploitation, ensures consistency, and alleviates pathologie s in existing adaptive methods. ITs adaptively sample from hierarchical partitions of the parameter space, while simultaneously learning these partitions in an online manner. This enables ITs to not only identify regions of high posterior mass, but also maintain uncertainty estimates to track regions where significant posterior mass may have been missed. ITs can be based on any inference method that provides a consistent estimate of the marginal likelihood. They are particularly effective when combined with sequential Monte Carlo, where they capture long-range dependencies and yield improvements beyond proposal adaptation alone.
This paper is concerned with making Bayesian inference from data that are assumed to be drawn from a Bingham distribution. A barrier to the Bayesian approach is the parameter-dependent normalising constant of the Bingham distribution, which, even whe n it can be evaluated or accurately approximated, would have to be calculated at each iteration of an MCMC scheme, thereby greatly increasing the computational burden. We propose a method which enables exact (in Monte Carlo sense) Bayesian inference for the unknown parameters of the Bingham distribution by completely avoiding the need to evaluate this constant. We apply the method to simulated and real data, and illustrate that it is simpler to implement, faster, and performs better than an alternative algorithm that has recently been proposed in the literature.
Due to the ease of modern data collection, applied statisticians often have access to a large set of covariates that they wish to relate to some observed outcome. Generalized linear models (GLMs) offer a particularly interpretable framework for such an analysis. In these high-dimensional problems, the number of covariates is often large relative to the number of observations, so we face non-trivial inferential uncertainty; a Bayesian approach allows coherent quantification of this uncertainty. Unfortunately, existing methods for Bayesian inference in GLMs require running times roughly cubic in parameter dimension, and so are limited to settings with at most tens of thousand parameters. We propose to reduce time and memory costs with a low-rank approximation of the data in an approach we call LR-GLM. When used with the Laplace approximation or Markov chain Monte Carlo, LR-GLM provides a full Bayesian posterior approximation and admits running times reduced by a full factor of the parameter dimension. We rigorously establish the quality of our approximation and show how the choice of rank allows a tunable computational-statistical trade-off. Experiments support our theory and demonstrate the efficacy of LR-GLM on real large-scale datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا