ﻻ يوجد ملخص باللغة العربية
Caches are a fundamental component of latency-sensitive computer systems. Recent work of [ASWB20] has initiated the study of delayed hits: a phenomenon in caches that occurs when the latency between the cache and backing store is much larger than the time between new requests. We present two results for the delayed hits caching model. (1) Competitive ratio lower bound. We prove that the competitive ratio of the algorithm in [ASWB20], and more generally of any deterministic online algorithm for delayed hits, is at least Omega(kZ), where k is the cache size and Z is the delay parameter. (2) Antimonotonicity of the delayed hits latency. Antimonotonicity is a naturally desirable property of cache latency: having a cache hit instead of a cache miss should result in lower overall latency. We prove that the latency of the delayed hits model is not antimonotone by exhibiting a scenario where having a cache hit instead of a miss results in an increase in overall latency. We additionally present a modification of the delayed hits model that makes the latency antimonotone.
In the model of online caching with machine learned advice, introduced by Lykouris and Vassilvitskii, the goal is to solve the caching problem with an online algorithm that has access to next-arrival predictions: when each input element arrives, the
We prove an $Omega(d lg n/ (lglg n)^2)$ lower bound on the dynamic cell-probe complexity of statistically $mathit{oblivious}$ approximate-near-neighbor search ($mathsf{ANN}$) over the $d$-dimensional Hamming cube. For the natural setting of $d = Thet
We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1,...,r} are to be stored in an array of size m >= n. The items are presented sequentially in an arbitrary order, and must be st
We study the space complexity of sketching cuts and Laplacian quadratic forms of graphs. We show that any data structure which approximately stores the sizes of all cuts in an undirected graph on $n$ vertices up to a $1+epsilon$ error must use $Omega
In the distributed subgraph-freeness problem, we are given a graph $H$, and asked to determine whether the network graph contains $H$ as a subgraph or not. Subgraph-freeness is an extremely local problem: if the network had no bandwidth constraints,