ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation and distribution of atomic entanglement in coupled-cavity arrays

107   0   0.0 ( 0 )
 نشر من قبل Guilherme Martins Alves De Almeida
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of entanglement in a 1D coupled-cavity array, each cavity containing a two-level atom, via the Jaynes-Cummings-Hubbard (JCH) Hamiltonian in the single-excitation sector. The model features a rich variety of dynamical regimes that can be harnessed for entanglement control. The protocol is based on setting an excited atom above the ground state and further letting it evolve following the natural dynamics of the Hamiltonian. Here we focus on the concurrence between pairs of atoms and its relation to atom-field correlations and the structure of the array. We show that the extension and distribution pattern of pairwise entanglement can be manipulated through a judicious tuning of the atom-cavity coupling strength only. Our work offers a comprehensive account over the machinery of the single-excitation JCH Hamiltonian as well as contributes to the design of hybrid light-matter quantum networks.

قيم البحث

اقرأ أيضاً

The increasing level of experimental control over atomic and optical systems gained in the past years have paved the way for the exploration of new physical regimes in quantum optics and atomic physics, characterised by the appearance of quantum many -body phenomena, originally encountered only in condensed-matter physics, and the possibility of experimentally accessing them in a more controlled manner. In this review article we survey recent theoretical studies concerning the use of cavity quantum electrodynamics to create quantum many-body systems. Based on recent experimental progress in the fabrication of arrays of interacting micro-cavities and on their coupling to atomic-like structures in several different physical architectures, we review proposals on the realisation of paradigmatic many-body models in such systems, such as the Bose-Hubbard and the anisotropic Heisenberg models. Such arrays of coupled cavities offer interesting properties as simulators of quantum many-body physics, including the full addressability of individual sites and the accessibility of inhomogeneous models.
We study the photon transfer along a linear array of three coupled cavities where the central one contains an interacting two-level system in the strong and ultrastrong coupling regimes. We find that an inhomogeneously coupled array forbids a complet e single-photon transfer between the external cavities when the central one performs a Jaynes-Cummings dynamics. This is not the case in the ultrastrong coupling regime, where the system exhibits singularities in the photon transfer time as a function of the cavity-qubit coupling strength. Our model can be implemented within the state-of-the-art circuit quantum electrodynamics technology and it represents a building block for studying photon state transfer through scalable cavity arrays.
The resonant interaction between two two-level atoms and m- electromagnetic modes in a cavity is considered. Entanglement dynamics between two atoms is examined. In particular we compare dynamical variations for different cavity modes as well as for different cavity photon numbers. The collapse and revival of entanglement is exhibited by varying the atom-photon interaction times.
An array of $N$ closely spaced dipole coupled quantum emitters exhibits super- and subradiance with characteristic tailorable spatial radiation patterns. Optimizing their geometry and distance with respect to the spatial profile of a near resonant op tical cavity mode allows to increase the ratio between light scattering into the cavity mode and free space by several orders of magnitude. This leads to a distinct nonlinear particle number scaling of the relative strength of coherent light-matter interactions versus decay. In particular, for subradiant states the collective cooperativity increases much faster than the typical linear $propto N$ scaling of independent emitters. This extraordinary collective enhancement is manifested both in the intensity and phase profile of the sharp collective emitter antiresonances detectable at the cavity output port via transmission spectroscopy.
Considerable efforts have been recently devoted to combining ultracold atoms and nanophotonic devices to obtain not only better scalability and figures of merit than in free-space implementations, but also new paradigms for atom-photon interactions. Dielectric waveguides offer a promising platform for such integration because they enable tight transverse confinement of the propagating light, strong photon-atom coupling in single-pass configurations and potentially long-range atom-atom interactions mediated by the guided photons. However, the preparation of non-classical quantum states in such atom-waveguide interfaces has not yet been realized. Here, by using arrays of individual caesium atoms trapped along an optical nanofibre, we observe a single collective atomic excitation coupled to a nanoscale waveguide. The stored collective entangled state can be efficiently read out with an external laser pulse, leading to on-demand emission of a single photon into the guided mode. We characterize the emitted single photon via the suppression of the two-photon component and confirm the single character of the atomic excitation, which can be retrieved with an efficiency of about 25%. Our results demonstrate a capability that is essential for the emerging field of waveguide quantum electrodynamics, with applications to quantum networking, quantum nonlinear optics and quantum many-body physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا