ﻻ يوجد ملخص باللغة العربية
We consider a non-Abelian candidate state at filling factor $ u=3/7$ state belonging to the parton family. We find that, in the second Landau level of GaAs (i.e. at filling factor $ u=2+3/7$), this state is energetically superior to the standard Jain composite-fermion state and also provides a very good representation of the ground state found in exact diagonalization studies of finite systems. This leads us to predict that emph{if} a fractional quantum Hall effect is observed at $ u=3/7$ in the second Landau level, it is likely to be described by this new non-Abelian state. We enumerate experimentally measurable properties that can verify the topological structure of this state.
Nonabelian anyons offer the prospect of storing quantum information in a topological qubit protected from decoherence, with the degree of protection determined by the energy gap separating the topological vacuum from its low lying excitations. Origin
It is an important open problem to understand the landscape of non-Abelian fractional quantum Hall phases which can be obtained starting from physically motivated theories of Abelian composite particles. We show that progress on this problem can be m
When Landau levels (LLs) become degenerate near the Fermi energy in the quantum Hall regime, interaction effects can drastically modify the electronic ground state. We study the quantum Hall ferromagnet formed in a two-dimensional hole gas around the
We study the fractional quantum Hall effect at filling fractions 7/3 and 5/2 in the presence of the spin-orbit interaction, using the exact diagonalization method and the density matrix renormalization group (DMRG) method in a spherical geometry. Tri
We investigate the effect of the filling factor on transport anisotropies, known as stripes, in high Landau levels of a two-dimensional electron gas. We find that at certain in-plane magnetic fields, the stripes orientation is sensitive to the fillin