ترغب بنشر مسار تعليمي؟ اضغط هنا

A non-Abelian fractional quantum Hall state at $3/7$ filled Landau level

157   0   0.0 ( 0 )
 نشر من قبل William Faugno
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a non-Abelian candidate state at filling factor $ u=3/7$ state belonging to the parton family. We find that, in the second Landau level of GaAs (i.e. at filling factor $ u=2+3/7$), this state is energetically superior to the standard Jain composite-fermion state and also provides a very good representation of the ground state found in exact diagonalization studies of finite systems. This leads us to predict that emph{if} a fractional quantum Hall effect is observed at $ u=3/7$ in the second Landau level, it is likely to be described by this new non-Abelian state. We enumerate experimentally measurable properties that can verify the topological structure of this state.



قيم البحث

اقرأ أيضاً

Nonabelian anyons offer the prospect of storing quantum information in a topological qubit protected from decoherence, with the degree of protection determined by the energy gap separating the topological vacuum from its low lying excitations. Origin ally proposed to occur in quantum wells in high magnetic fields, experimental systems thought to harbor nonabelian anyons range from p-wave superfluids to superconducting systems with strong spin orbit coupling. However, all of these systems are characterized by small energy gaps, and despite several decades of experimental work, definitive evidence for nonabelian anyons remains elusive. Here, we report the observation of arobust, incompressible even-denominator fractional quantum Hall phase in a new generation of dual-gated, hexagonal boron nitride encapsulated bilayer graphene samples. Numerical simulations suggest that this state is in the Pfaffian phase and hosts nonabelian anyons, and the measured energy gaps are several times larger than those observed in other systems. Moreover, the unique electronic structure of bilayer graphene endows the electron system with two new control parameters. Magnetic field continuously tunes the effective electron interactions, changing the even-denominator gap non-monotonically and consistent with predictions that a transition between the Pfaffian phase and the composite Fermi liquid (CFL) occurs just beyond the experimentally explored magnetic field range. Electric field, meanwhile, tunes crossings between levels from different valleys. By directly measuring the valley polarization, we observe a continuous transition from an incompressible to a compressible phase at half-filling mediated by an unexpected incompressible, yet polarizable, intermediate phase. Valley conservation implies this phase is an electrical insulator with gapless neutral excitations.
201 - Hart Goldman , Ramanjit Sohal , 2019
It is an important open problem to understand the landscape of non-Abelian fractional quantum Hall phases which can be obtained starting from physically motivated theories of Abelian composite particles. We show that progress on this problem can be m ade using recently proposed non-Abelian bosonization dualities in 2+1 dimensions, which morally relate $U(N)_k$ and $SU(k)_{-N}$ Chern-Simons-matter theories. The advantage of these dualities is that regions of the phase diagram which may be obscure on one side of the duality can be accessed by condensing local operators on the other side. Starting from parent Abelian states, we use this approach to construct Landau-Ginzburg theories of non-Abelian states through a pairing mechanism. In particular, we obtain the bosonic Read-Rezayi sequence at fillings $ u=k/(kM+2)$ by starting from $k$ layers of bosons at $ u=1/2$ with $M$ Abelian fluxes attached. The Read-Rezayi states arise when $k$-clusters of the dual non-Abelian bosons condense. We extend this construction by showing that $N_f$-component generalizations of the Halperin $(2,2,1)$ bosonic states have dual descriptions in terms of $SU(N_f+1)_1$ Chern-Simons-matter theories, revealing an emergent global symmetry in the process. Clustering $k$ layers of these theories yields a non-Abelian $SU(N_f)$-singlet state at filling $ u = kN_f / (N_f + 1 + kMN_f)$.
When Landau levels (LLs) become degenerate near the Fermi energy in the quantum Hall regime, interaction effects can drastically modify the electronic ground state. We study the quantum Hall ferromagnet formed in a two-dimensional hole gas around the LL filling factor $ u=1$ in the vicinity of a LL crossing in the heave-hole valence band. Cavity spectroscopy in the strong-coupling regime allows us to optically extract the two-dimensional hole gas spin polarization. By analyzing this polarization as a function of hole density and magnetic field, we observe a spin flip of the ferromagnet. Furthermore, the depolarization away from $ u=1$ accelerates close to the LL crossing. This is indicative of an increase in the size of Skyrmion excitations as the effective Zeeman energy vanishes at the LL crossing.
133 - T. Ito , K. Nomura , N. Shibata 2010
We study the fractional quantum Hall effect at filling fractions 7/3 and 5/2 in the presence of the spin-orbit interaction, using the exact diagonalization method and the density matrix renormalization group (DMRG) method in a spherical geometry. Tri al wave functions at these fillings are the Laughlin state and the Moore-Reed-Pfaffian state. The ground state excitation energy gaps and pair-correlation functions at fractional filling factor 7/3 and 5/2 in the second Landau level are calculated. We find that the spin-orbit interaction stabilizes the fractional quantum Hall states.
385 - Q. Shi , M. A. Zudov , J.D. Watson 2016
We investigate the effect of the filling factor on transport anisotropies, known as stripes, in high Landau levels of a two-dimensional electron gas. We find that at certain in-plane magnetic fields, the stripes orientation is sensitive to the fillin g factor within a given Landau level. This sensitivity gives rise to the emergence of stripes away from half-filling while an orthogonally-oriented, native stripes reside at half-filling. This switching of the anisotropy axes within a single Landau level can be attributed to a strong dependence of the native symmetry breaking potential on the filling factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا