ترغب بنشر مسار تعليمي؟ اضغط هنا

Reorientation of quantum Hall stripes within a partially filled Landau level

386   0   0.0 ( 0 )
 نشر من قبل Michael A. Zudov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of the filling factor on transport anisotropies, known as stripes, in high Landau levels of a two-dimensional electron gas. We find that at certain in-plane magnetic fields, the stripes orientation is sensitive to the filling factor within a given Landau level. This sensitivity gives rise to the emergence of stripes away from half-filling while an orthogonally-oriented, native stripes reside at half-filling. This switching of the anisotropy axes within a single Landau level can be attributed to a strong dependence of the native symmetry breaking potential on the filling factor.

قيم البحث

اقرأ أيضاً

108 - Q. Shi , M. A. Zudov , B. Friess 2017
Our magnetotransport measurements of quantum Hall stripes in a high-quality GaAs quantum well in a slightly tilted magnetic field reveal that the orientation of stripes can be changed by temperature. Field-cooling and field-warming measurements, as w ell as observation of hysteresis at intermediate temperatures allow us to conclude that the observed temperature-induced reorientation of stripes is owing to the existence of two distinct minima in the symmetry-breaking potential. We also find that the native symmetry-breaking mechanism does not depend on temperature and that low-temperature magnetotransport data should be treated with caution as they do not necessarily reveal the true ground state, even in the absence of hysteresis.
156 - W. N. Faugno , J. K. Jain , 2020
We consider a non-Abelian candidate state at filling factor $ u=3/7$ state belonging to the parton family. We find that, in the second Landau level of GaAs (i.e. at filling factor $ u=2+3/7$), this state is energetically superior to the standard Jain composite-fermion state and also provides a very good representation of the ground state found in exact diagonalization studies of finite systems. This leads us to predict that emph{if} a fractional quantum Hall effect is observed at $ u=3/7$ in the second Landau level, it is likely to be described by this new non-Abelian state. We enumerate experimentally measurable properties that can verify the topological structure of this state.
In this paper we study the relation between the conventional Fermion-Chern-Simons (FCS) theory of the half-filled Landau level (nu=1/2), and alternate descriptions that are based on the notion of neutral quasi-particles that carry electric dipole mom ents. We have previously argued that these two approaches are equivalent, and that e.g., the finite compressibility obtained in the FCS approach is also obtained from the alternate approach, provided that one properly takes into account a peculiar symmetry of the dipolar quasiparticles --- the invariance of their energy to a shift of their center of mass momentum. Here, we demonstrate the equivalence of these two approaches in detail. We first study a model where the charge and flux of each fermion is smeared over a radius Q^{-1} where results can be calculated to leading order in the small parameter Q/k_f. We study two dipolar-quasiparticle descriptions of the nu=1/2 state in the small-Q model and confirm that they yield the same density response function as in the FCS approach. We also study the single-particle Greens function and the effective mass, for one form of dipolar quasiparticles, and find the effective mass to be infra-red divergent, exactly as in the FCS approach. Finally, we propose a form for a Fermi-liquid theory for the dipolar quasiparticles, which should be valid in the physical case where Q is infinite.
We present activation gap measurements of the fractional quantum Hall effect (FQHE) in the second Landau level. Signatures for 14 (5) distinct incompressible FQHE states are seen in a high (low) mobility sample with the enigmatic 5/2 even denominator FQHE having a large activation gap of $sim$600 ($sim$300mK) in the high (low) mobility sample. Our measured large relative gaps for 5/2, 7/3, and 8/3 FQHE indicate emergence of exotic FQHE correlations in the second Ladau level, possibly quite different from the well-known lowest Landau level Laughlin correlations. Our measured 5/2 gap is found to be in reasonable agreement with the theoretical gap once finite width and disorder broadening corrections are taken into account.
Motivated by recent proposal by Potter et al. [Phys. Rev. X 6, 031026 (2016)] concerning possible thermoelectric signatures of Dirac composite fermions, we perform a systematic experimental study of thermoelectric transport of an ultrahigh-mobility G aAs/AlxGa1-xAs two dimensional electron system at filling factor v = 1/2. We demonstrate that the thermopower Sxx and Nernst Sxy are symmetric and anti-symmetric with respect to B = 0 T, respectively. The measured properties of thermopower Sxx at v = 1/2 are consistent with previous experimental results. The Nernst signals Sxy of v = 1/2, which have not been reported previously, are non-zero and show a power law relation with temperature in the phonon-drag dominant region. In the electron-diffusion dominant region, the Nernst signals Sxy of v = 1/2 are found to be significantly smaller than the linear temperature dependent values predicted by Potter et al., and decreasing with temperature faster than linear dependence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا