ﻻ يوجد ملخص باللغة العربية
The frictional force (stopping power) acting on a test electron moving through the ideal electron gas is calculated taking into account electron-neutral atom collisions using the linear plasma response formalism. This allows us to elucidate how the effective Coulomb logarithm is affected by electron-neutral collisions. In agreement with a recent investigation by Hagelaar, Donko, and Dyatko [Phys. Rev. Lett. {bf 123}, 025004 (2019)] we observe that the effective Coulomb logarithm decreases considerably due to electron-neutral collisions and becomes inversely proportional to the collision frequency in the highly collisional limit.
While ion heating by elastic electron-ion collisions may be neglected for a description of the evolution of freely expanding ultracold neutral plasmas, the situation is different in scenarios where the ions are laser-cooled during the system evolutio
The standard picture of the Coulomb logarithm in the ideal plasma is controversial, the arguments for the lower cut off need revision. The two cases of far subthermal and of far superthermal electron drift motions are accessible to a rigorous analyti
A bounded plasma where the electrons impacting the walls produce more than one secondary on average is studied via particle-in-cell simulation. It is found that no classical Debye sheath or space-charge limited sheath exists. Ions are not drawn to th
A new regime of fast magnetic reconnection with an out-of-plane (guide) magnetic field is reported in which the key role is played by an electron pressure anisotropy described by the Chew-Goldberger-Low gyrotropic equations of state in the generalize
We present long-time simulations of expanding ultracold neutral plasmas, including a full treatment of the strongly coupled ion dynamics. Thereby, the relaxation dynamics of the expanding laser-cooled plasma is studied, taking into account elastic as