ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent topological polariton laser

81   0   0.0 ( 0 )
 نشر من قبل Tristan Harder
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological concepts have been applied to a wide range of fields in order to successfully describe the emergence of robust edge modes that are unaffected by scattering or disorder. In photonics, indications of lasing from topologically protected modes with improved overall laser characteristics were observed. Here, we study exciton-polariton microcavity traps that are arranged in a one-dimensional Su-Schrieffer-Heeger lattice and form a topological defect mode from which we unequivocally observe highly coherent polariton lasing. Additionally, we confirm the excitonic contribution to the polariton lasing by applying an external magnetic field. These systematic experimental findings of robust lasing and high temporal coherence are meticulously reproduced by a combination of a generalized Gross-Pitaevskii model and a Lindblad master equation model. Thus, by using the comparatively simple SSH geometry, we are able to describe and control the exciton-polariton topological lasing, allowing for a deeper understanding of topological effects on microlasers.



قيم البحث

اقرأ أيضاً

We report on the simultaneous observation of spontaneous symmetry breaking and long-range spatial coherence both in the strong and the weak-coupling regime in a semiconductor microcavity. Under pulsed excitation, the formation of a stochastic order p arameter is observed in polariton and photon lasing regimes. Single-shot measurements of the Stokes vector of the emission exhibit the buildup of stochastic polarization. Below threshold, the polarization noise does not exceed 10%, while above threshold we observe a total polarization of up to 50% after each excitation pulse, while the polarization averaged over the ensemble of pulses remains nearly zero. In both polariton and photon lasing regimes, the stochastic polarization buildup is accompanied by the buildup of spatial coherence. We find that the Landau criterion of spontaneous symmetry breaking and Penrose-Onsager criterion of long-range order for Bose-Einstein condensation are met in both polariton and photon lasing regimes.
Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from non-trivial topology. Exciton-polaritons, bosonic quasi-particles of light and matter, have shown to combine the on-chip benefits of optical systems with strong interactions, inherited form their matter character. Technologically significant semiconductor platforms, however, strictly require cryogenic temperatures for operability. In this paper, we demonstrate exciton-polariton lasing for topological defects emerging form the imprinted lattice structure at room temperature. We utilize a monomeric red fluorescent protein derived from DsRed of Discosoma sea anemones, hosting highly stable Frenkel excitons. Using a patterned mirror cavity, we tune the lattice potential landscape of a linear Su-Schrieffer-Heeger chain to design topological defects at domain boundaries and at the edge. In spectroscopic experiments, we unequivocally demonstrate polariton lasing from these topological defects. This progress promises to be a paradigm shift, paving the road to interacting Boson many-body physics at ambient conditions.
Interactions of few-cycle terahertz pulses with the induced optical polarization in a quantum-well microcavity reveal that the lower and higher exciton-polariton modes together with the optically forbidden 2p-exciton state form a unique {Lambda}-type three-level system. Pronounced nonlinearities are observed via time-resolved strong-terahertz and weak-optical excitation spectroscopy and explained with a fully microscopic theory. The results show that the terahertz pulses strongly couple the exciton-polariton states to the 2p-exciton state while no resonant transition between the two polariton levels is observed.
We report the creation and real-space observation of magnetic structures with well-defined topological properties and a lateral size as low as about 150 nm. They are generated in a thin ferrimagnetic film by ultrashort single optical laser pulses. Th anks to their topological properties, such structures can be classified as Skyrmions of a particular type that does not require an externally applied magnetic field for stabilization. Besides Skyrmions, we are able to generate magnetic features with topological characteristics that can be tuned by changing the laser fluence. The stability of such features is accounted for by an analytical model based on the interplay between the exchange and the magnetic dipole-dipole interactions
We investigate the dynamics of chiral edge states in topological polariton systems under laser driving. Using a model system comprised of topolgically trivial excitons and photons with a chiral coupling proposed by Karzig et al. [Phys. Rev. X 5, 0310 01 (2015)], we investigate the real-time dynamics of a lattice version of this model driven by a laser pulse. By analyzing the time- and momentum-resolved spectral function, measured by time- and angle-resolved photoluminescence in analogy with time- and angle-resolved photoemission spectroscopy in electronic systems, we find that polaritonic states in a ribbon geometry are selectively excited via their resonance with the pump laser photon frequency. This selective excitation mechanism is independent of the necessity of strong laser pumping and polariton condensation. Our work highlights the potential of time-resolved spectroscopy as a complementary tool to real-space imaging for the investigation of topological edge state engineering in devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا