ترغب بنشر مسار تعليمي؟ اضغط هنا

Terahertz excitation of a coherent three-level {Lambda}-type exciton-polariton microcavity mode

287   0   0.0 ( 0 )
 نشر من قبل Yun-Shik Lee
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interactions of few-cycle terahertz pulses with the induced optical polarization in a quantum-well microcavity reveal that the lower and higher exciton-polariton modes together with the optically forbidden 2p-exciton state form a unique {Lambda}-type three-level system. Pronounced nonlinearities are observed via time-resolved strong-terahertz and weak-optical excitation spectroscopy and explained with a fully microscopic theory. The results show that the terahertz pulses strongly couple the exciton-polariton states to the 2p-exciton state while no resonant transition between the two polariton levels is observed.



قيم البحث

اقرأ أيضاً

Terahertz emission between exciton-polariton branches in semiconductor microcavities is expected to be strongly stimulated in the polariton laser regime, due to the high density of particles in the lower state (final state stimulation effect). Howeve r, non-radiative scattering processes depopulate the upper state and greatly hinder the efficiency of such terahertz sources. In this work, we suggest a new scheme using multiple microcavities and exploiting the transition between two interband polariton branches located below the exciton level. We compare the non-radiative processes loss rates in single and double cavity devices and we show that a dramatic reduction can be achieved in the latter, enhancing the efficiency of the terahertz emission.
We present a microcavity structure with a shifted photonic stop-band to enable efficient non-resonant injection of a polariton condensate with spectrally broad femtosecond pulses. The concept is demonstrated theoretically and confirmed experimentally for a planar GaAs/AlGaAs multilayer heterostructure pumped with ultrashort near-infrared pulses while photoluminescence is collected to monitor the optically injected polariton density. As the excitation wavelength is scanned, a regime of polariton condensation can be reached in our structure at a consistently lower fluence threshold than in a state-of-the-art conventional microcavity. Our microcavity design improves the polariton injection efficiency by a factor of 4, as compared to a conventional microcavity design, when broad excitation pulses are centered at a wavelength of 740 nm. Most remarkably, this improvement factor reaches 270 when the excitation wavelength is centered at 750 nm.
Topological concepts have been applied to a wide range of fields in order to successfully describe the emergence of robust edge modes that are unaffected by scattering or disorder. In photonics, indications of lasing from topologically protected mode s with improved overall laser characteristics were observed. Here, we study exciton-polariton microcavity traps that are arranged in a one-dimensional Su-Schrieffer-Heeger lattice and form a topological defect mode from which we unequivocally observe highly coherent polariton lasing. Additionally, we confirm the excitonic contribution to the polariton lasing by applying an external magnetic field. These systematic experimental findings of robust lasing and high temporal coherence are meticulously reproduced by a combination of a generalized Gross-Pitaevskii model and a Lindblad master equation model. Thus, by using the comparatively simple SSH geometry, we are able to describe and control the exciton-polariton topological lasing, allowing for a deeper understanding of topological effects on microlasers.
Light-matter coupling in van der Waals materials holds significant promise in realizing Bosonic condensation and superfluidity. The underlying semiconductors crystal asymmetry, if any, can be utilized to form anisotropic half-light half-matter quasip articles. We demonstrate generation of such highly anisotropic exciton-polaritons at the interface of a biaxial layered semiconductor, stacked on top of a distributed Bragg reflector. The spatially confined photonic mode in this geometry couples with polarized excitons and their Rydberg states, creating a system of highly anisotropic polariton manifolds, displaying vacuum Rabi splitting of upto 68 meV. Rotation of the incident beam polarization is used to tune coupling strength and smoothly switch regimes from weak to strong coupling, while also enabling transition from one three-body coupled oscillator system to another. Light-matter coupling is further tunable by varying the number of weakly coupled optically active layers. Our work provides a versatile method of engineering devices for applications in polarization-controlled polaritonics and optoelectronics.
We have performed real and momentum space spin-dependent spectroscopy of spontaneously formed exciton polariton condensates for a non-resonant pumping scheme. Under linearly polarized pump, our results can be understood in terms of spin-dependent Bol tzmann equations in a two-state model. This suggests that relaxation into the ground state occurs after multiple phonon scattering events and only one polariton-polariton scattering. For the circular pumping case, in which only excitons of one spin are injected, a bottleneck effect is observed, implying inefficient relaxation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا