ﻻ يوجد ملخص باللغة العربية
We analyze a quantum-classical hybrid system of steadily precessing slow classical localized magnetic moments, forming a head-to-head domain wall, embedded into an open quantum system of fast nonequilibrium electrons. The electrons reside within a metallic wire connected to macroscopic reservoirs. The model captures the essence of dynamical noncollinear and noncoplanar magnetic textures in spintronics, while making it possible to obtain the exact time-dependent nonequilibrium density matrix of electronic system and split it into four contributions. The Fermi surface contribution generates dissipative (or damping-like in spintronics terminology) spin torque on the moments, and one of the two Fermi sea contributions generates geometric torque dominating in the adiabatic regime. When the coupling to the reservoirs is reduced, the geometric torque is the only nonzero contribution. Locally it has both nondissipative (or field-like in spintronics terminology) and damping-like components, but with the sum of latter being zero, which act as the counterparts of geometric magnetism force and electronic friction in nonadiabatic molecular dynamics. Such current-independent geometric torque is absent from widely used micromagnetics or atomistic spin dynamics modeling of magnetization dynamics based on the Landau-Lifshitz-Gilbert equation, where previous analysis of Fermi surface-type torque has severely underestimated its magnitude.
We discuss the semiclassical and classical character of the dynamics of a single spin 1/2 coupled to a bath of noninteracting spins 1/2. On the semiclassical level, we extend our previous approach presented in D. Stanek, C. Raas, and G. S. Uhrig, Phy
The realisation of quantum computers based on molecular electronic spins requires the design of qubits with very long coherence times, T2. Dephasing can proceed over several different microscopic pathways, active at the same time and in different reg
We investigate spin-orbit torques on magnetization in an insulating ferromagnetic (FM) layer that is brought into a close proximity to a topological insulator (TI). In addition to the well-known field-like spin-orbit torque, we identify an anisotropi
Our world is composed of various materials with different structures, where spin structures have been playing a pivotal role in spintronic devices of the contemporary information technology. Apart from conventional collinear spin materials such as co
We propose a theoretical framework that captures the geometric vector potential emerging from the non-adiabatic spin dynamics of itinerant carriers subject to arbitrary magnetic textures. Our approach results in a series of constraints on the geometr