ترغب بنشر مسار تعليمي؟ اضغط هنا

MACER: A Modular Framework for Accelerated Compilation Error Repair

120   0   0.0 ( 0 )
 نشر من قبل Purushottam Kar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automated compilation error repair, the problem of suggesting fixes to buggy programs that fail to compile, has generated significant interest in recent years. Apart from being a tool of general convenience, automated code repair has significant pedagogical applications for novice programmers who find compiler error messages cryptic and unhelpful. Existing approaches largely solve this problem using a blackbox-application of a heavy-duty generative learning technique, such as sequence-to-sequence prediction (TRACER) or reinforcement learning (RLAssist). Although convenient, such black-box application of learning techniques makes existing approaches bulky in terms of training time, as well as inefficient at targeting specific error types. We present MACER, a novel technique for accelerated error repair based on a modular segregation of the repair process into repair identification and repair application. MACER uses powerful yet inexpensive discriminative learning techniques such as multi-label classifiers and rankers to first identify the type of repair required and then apply the suggested repair. Experiments indicate that the fine-grained approach adopted by MACER offers not only superior error correction, but also much faster training and prediction. On a benchmark dataset of 4K buggy programs collected from actual student submissions, MACER outperforms existing methods by 20% at suggesting fixes for popular errors that exactly match the fix desired by the student. MACER is also competitive or better than existing methods at all error types -- whether popular or rare. MACER offers a training time speedup of 2x over TRACER and 800x over RLAssist, and a test time speedup of 2-4x over both.



قيم البحث

اقرأ أيضاً

Smart contracts are automated or self-enforcing contracts that can be used to exchange assets without having to place trust in third parties. Many commercial transactions use smart contracts due to their potential benefits in terms of secure peer-to- peer transactions independent of external parties. Experience shows that many commonly used smart contracts are vulnerable to serious malicious attacks which may enable attackers to steal valuable assets of involving parties. There is therefore a need to apply analysis and automated repair techniques to detect and repair bugs in smart contracts before being deployed. In this work, we present the first general-purpose automated smart contract repair approach that is also gas-aware. Our repair method is search-based and searches among mutations of the buggy contract. Our method also considers the gas usage of the candidate patches by leveraging our novel notion of gas dominance relationship. We have made our smart contract repair tool SCRepair available open-source, for investigation by the wider community.
118 - Changwang Zhang , Shi Zhou , 2015
LeoTask is a Java library for computation-intensive and time-consuming research tasks. It automatically executes tasks in parallel on multiple CPU cores on a computing facility. It uses a configuration file to enable automatic exploration of paramete r space and flexible aggregation of results, and therefore allows researchers to focus on programming the key logic of a computing task. It also supports reliable recovery from interruptions, dynamic and cloneable networks, and integration with the plotting software Gnuplot.
Modern, complex software systems are being continuously extended and adjusted. The developers responsible for this may come from different teams or organizations, and may be distributed over the world. This may make it difficult to keep track of what other developers are doing, which may result in multiple developers concurrently editing the same code areas. This, in turn, may lead to hard-to-merge changes or even merge conflicts, logical bugs that are difficult to detect, duplication of work, and wasted developer productivity. To address this, we explore the extent of this problem in the pull request based software development model. We study half a year of changes made to six large repositories in Microsoft in which at least 1,000 pull requests are created each month. We find that files concurrently edited in different pull requests are more likely to introduce bugs. Motivated by these findings, we design, implement, and deploy a service named ConE (Concurrent Edit Detector) that proactively detects pull requests containing concurrent edits, to help mitigate the problems caused by them. ConE has been designed to scale, and to minimize false alarms while still flagging relevant concurrently edited files. Key concepts of ConE include the detection of the Extent of Overlap between pull requests, and the identification of Rarely Concurrently Edited Files. To evaluate ConE, we report on its operational deployment on 234 repositories inside Microsoft. ConE assessed 26,000 pull requests and made 775 recommendations about conflicting changes, which were rated as useful in over 70% (554) of the cases. From interviews with 48 users we learned that they believed ConE would save time in conflict resolution and avoiding duplicate work, and that over 90% intend to keep using the service on a daily basis.
The success of the application of machine-learning techniques to compilation tasks can be largely attributed to the recent development and advancement of program characterization, a process that numerically or structurally quantifies a target program . While great achievements have been made in identifying key features to characterize programs, choosing a correct set of features for a specific compiler task remains an ad hoc procedure. In order to guarantee a comprehensive coverage of features, compiler engineers usually need to select excessive number of features. This, unfortunately, would potentially lead to a selection of multiple similar features, which in turn could create a new problem of bias that emphasizes certain aspects of a programs characteristics, hence reducing the accuracy and performance of the target compiler task. In this paper, we propose FEAture Selection for compilation Tasks (FEAST), an efficient and automated framework for determining the most relevant and representative features from a feature pool. Specifically, FEAST utilizes widely used statistics and machine-learning tools, including LASSO, sequential forward and backward selection, for automatic feature selection, and can in general be applied to any numerical feature set. This paper further proposes an automated approach to compiler parameter assignment for assessing the performance of FEAST. Intensive experimental results demonstrate that, under the compiler parameter assignment task, FEAST can achieve comparable results with about 18% of features that are automatically selected from the entire feature pool. We also inspect these selected features and discuss their roles in program execution.
We present TarTar, an automatic repair analysis tool that, given a timed diagnostic trace (TDT) obtained during the model checking of a timed automaton model, suggests possible syntactic repairs of the analyzed model. The suggested repairs include mo dified values for clock bounds in location invariants and transition guards, adding or removing clock resets, etc. The proposed repairs are guaranteed to eliminate executability of the given TDT, while preserving the overall functional behavior of the system. We give insights into the design and architecture of TarTar, and show that it can successfully repair 69% of the seeded errors in system models taken from a diverse suite of case studies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا