ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating Correlations of Automatically Extracted Multimodal Features and Lecture Video Quality

142   0   0.0 ( 0 )
 نشر من قبل Christian Otto
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ranking and recommendation of multimedia content such as videos is usually realized with respect to the relevance to a user query. However, for lecture videos and MOOCs (Massive Open Online Courses) it is not only required to retrieve relevant videos, but particularly to find lecture videos of high quality that facilitate learning, for instance, independent of the videos or speakers popularity. Thus, metadata about a lecture videos quality are crucial features for learning contexts, e.g., lecture video recommendation in search as learning scenarios. In this paper, we investigate whether automatically extracted features are correlated to quality aspects of a video. A set of scholarly videos from a Mass Open Online Course (MOOC) is analyzed regarding audio, linguistic, and visual features. Furthermore, a set of cross-modal features is proposed which are derived by combining transcripts, audio, video, and slide content. A user study is conducted to investigate the correlations between the automatically collected features and human ratings of quality aspects of a lecture video. Finally, the impact of our features on the knowledge gain of the participants is discussed.

قيم البحث

اقرأ أيضاً

Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.
We report results from a measurement study of three video streaming services, YouTube, Dailymotion and Vimeo on six different smartphones. We measure and analyze the traffic and energy consumption when streaming different quality videos over Wi-Fi an d 3G. We identify five different techniques to deliver the video and show that the use of a particular technique depends on the device, player, quality, and service. The energy consumption varies dramatically between devices, services, and video qualities depending on the streaming technique used. As a consequence, we come up with suggestions on how to improve the energy efficiency of mobile video streaming services.
We propose a new method for the visual quality assessment of 360-degree (omnidirectional) videos. The proposed method is based on computing multiple spatio-temporal objective quality features on viewports extracted from 360-degree videos. A new model is learnt to properly combine these features into a metric that closely matches subjective quality scores. The main motivations for the proposed approach are that: 1) quality metrics computed on viewports better captures the user experience than metrics computed on the projection domain; 2) the use of viewports easily supports different projection methods being used in current 360-degree video systems; and 3) no individual objective image quality metric always performs the best for all types of visual distortions, while a learned combination of them is able to adapt to different conditions. Experimental results, based on both the largest available 360-degree videos quality dataset and a cross-dataset validation, demonstrate that the proposed metric outperforms state-of-the-art 360-degree and 2D video quality metrics.
Quality assessment plays a key role in creating and comparing video compression algorithms. Despite the development of a large number of new methods for assessing quality, generally accepted and well-known codecs comparisons mainly use the classical methods like PSNR, SSIM and new method VMAF. These methods can be calculated following different rules: they can use different frame-by-frame averaging techniques or different summation of color components. In this paper, a fundamental comparison of vario
We tackle the crucial challenge of fusing different modalities of features for multimodal sentiment analysis. Mainly based on neural networks, existing approaches largely model multimodal interactions in an implicit and hard-to-understand manner. We address this limitation with inspirations from quantum theory, which contains principled methods for modeling complicated interactions and correlations. In our quantum-inspired framework, the word interaction within a single modality and the interaction across modalities are formulated with superposition and entanglement respectively at different stages. The complex-valued neural network implementation of the framework achieves comparable results to state-of-the-art systems on two benchmarking video sentiment analysis datasets. In the meantime, we produce the unimodal and bimodal sentiment directly from the model to interpret the entangled decision.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا