ﻻ يوجد ملخص باللغة العربية
The `Red Supergiant Problem describes the claim that the brightest Red Supergiant (RSG) progenitors to type II-P supernovae are significantly fainter than RSGs in the field. This mismatch has been interpreted by several authors as being a manifestation of the mass threshold for the production of black holes (BHs), such that stars with initial masses above a cutoff of $M_{rm hi}=17$M$_odot$ and below 25$M_odot$ will die as RSGs, but with no visible SN explosion as the BH is formed. However, we have previously cautioned that this cutoff is more likely to be higher and has large uncertainties ($M_{rm hi}=19^{+4}_{-2}M_{odot}$), meaning that the statistical significance of the RSG Problem is less than $2sigma$. Recently, Kochanek (2020) has claimed that our work is statistically flawed, and with their analysis has argued that the upper mass cutoff is as low as $M_{rm hi} = 15.7 pm 0.8M_odot$, giving the RSG Problem a significance of $>10sigma$. In this letter, we show that Kochaneks low cutoff is caused by a statistical misinterpretation, and the associated fit to the progenitor mass spectrum can be ruled out at the 99.6% confidence level. Once this problem is remedied, Kochaneks best fit becomes $M_{rm hi} =19^{+4}_{-2}M_{odot}$, in excellent agreement with our work. Finally, we argue that, in the search for a RSG `vanishing as it collapses directly to a BH, any such survey would have to operate for decades before the absence of any such detection became statistically significant.
By comparing the properties of Red Supergiant (RSG) supernova progenitors to those of field RSGs, it has been claimed that there is an absence of progenitors with luminosities $L$ above $log(L/L_odot) > 5.2$. This is in tension with the empirical upp
We examine the problem of estimating the mass range corresponding to the observed red supergiant (RSG) progenitors of Type IIP supernovae. Using Monte Carlo simulations designed to reproduce the properties of the observations, we find that the approa
We analyze two pre-supernova (SN) and three post-SN high-resolution images of the site of the Type II-Plateau supernova SN 2006my in an effort to either detect the progenitor star or to constrain its properties. Following image registration, we find
In our preceding paper, Liverpool Telescope data of M31 novae in eruption were used to facilitate a search for their progenitor systems within archival Hubble Space Telescope (HST) data, with the aim of detecting systems with red giant secondaries (R
Over the last 15 years, the supernova community has endeavoured to identify progenitor stars of core-collapse supernovae in high resolution archival images of their galaxies.This review compiles results (from 1999 - 2013) in a distance limited sample