ﻻ يوجد ملخص باللغة العربية
The cohomological rigidity problem for toric manifolds asks whether toric manifolds are diffeomorphic (or homeomorphic) if their integral cohomology rings are isomorphic. Many affirmative partial solutions to the problem have been obtained and no counterexample is known. In this paper, we study the diffeomorphism classification of toric Fano $d$-folds with $d=3,4$ or with Picard number $ge 2d-2$. In particular, we show that those manifolds except for two toric Fano $4$-folds are diffeomorphic if their integral cohomology rings are isomorphic. The exceptional two toric Fano $4$-folds (their ID numbers are 50 and 57 on a list of {O}bro) have isomorphic cohomology rings and their total Pontryagin classes are preserved under an isomorphism between their cohomology rings, but we do not know whether they are diffeomorphic or homeomorphic.
In the present paper, we characterize Fano Bott manifolds up to diffeomorphism in terms of three operations on matrix. More precisely, we prove that given two Fano Bott manifolds $X$ and $X$, the following conditions are equivalent: (1) the upper tri
It is proved that if two quasitoric manifolds of dimension $le 2p^2-4$ for a prime $p$ have isomorphic cohomology rings, then they have the same $p$-local stable homotopy type.
A quasitoric manifold is a smooth manifold with a locally standard torus action for which the orbit space is identified with a simple polytope. For a class of topological spaces, the class is called strongly cohomologically rigid if any isomorphism o
We study the question whether rational homogeneous spaces are rigid under Fano deformation. In other words, given any smooth connected family f:X -> Zof Fano manifolds, if one fiber is biholomorphic to a rational homogeneous space S, whether is f an
The main objects of the present paper are (i) Hibi rings (toric rings arising from order polytopes of posets), (ii) stable set rings (toric rings arising from stable set polytopes of perfect graphs), and (iii) edge rings (toric rings arising from edg