ترغب بنشر مسار تعليمي؟ اضغط هنا

The Diffuse Light Envelope of Luminous Red Galaxies

55   0   0.0 ( 0 )
 نشر من قبل Yat Long Leung
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a stacking method to study the radial light profiles of luminous red galaxies (LRGs) at redshift $sim 0.62$ and $sim 0.25$, out to a radial range of 200 kpc. We do not find noticeable evolution of the profiles at the two redshifts. The LRG profiles appear to be well approximated by a single Sersic profile, although some excess light can be seen outside 60 kpc. We quantify the excess light by measuring the integrated flux and find that the excess is about 10% -- a non-dominant but still nonnegligible component.

قيم البحث

اقرأ أيضاً

We detect and study the properties of faint radio AGN in Luminous Red Galaxies (LRGs). The LRG sample comprises 760,000 objects from a catalog of LRG photometric redshifts constructed from the Sloan Digital Sky Survey (SDSS) imaging data, and 65,000 LRGs from the SDSS spectroscopic sample. These galaxies have typical 1.4 GHz flux densities in the 10s-100s of microJy, with the contribution from a low-luminosity AGN dominating any contribution from star formation. To probe the radio properties of such faint objects, we employ a stacking technique whereby FIRST survey image cutouts at each optical LRG position are sorted by the parameter of interest and median-combined within bins. We find that median radio luminosity scales with optical luminosity (L_opt) as L_1.4 GHz ~ L_opt^(beta), where beta appears to decrease from beta ~ 1 at z = 0.4 to beta ~ 0 at z = 0.7, a result which could be indicative of AGN cosmic downsizing. We also find that the overall LRG population, which is dominated by low-luminosity AGN, experiences significant cosmic evolution between z = 0.2 and z = 0.7. This implies a considerable increase in total AGN heating for these massive ellipticals with redshift. By matching against the FIRST catalog, we investigate the incidence and properties of LRGs associated with double-lobed (FR I/II) radio galaxies. (Abridged)
We present the results of optical, near-infrared, and mid-infrared observations of M101 OT2015-1 (PSN J14021678+5426205), a luminous red transient in the Pinwheel galaxy (M101), spanning a total of 16 years. The lightcurve showed two distinct peaks w ith absolute magnitudes $M_rleq-12.4$ and $M_r simeq-12$, on 2014 November 11 and 2015 February 17, respectively. The spectral energy distributions during the second maximum show a cool outburst temperature of $approx$3700 K and low expansion velocities ($approx-$300 kms) for the H I, Ca II, Ba II and K I lines. From archival data spanning 15 to 8 years before the outburst, we find a single source consistent with the optically discovered transient which we attribute to being the progenitor; it has properties consistent with being an F-type yellow supergiant with $L$~$sim$~8.7~$times 10^4$ Lsun, $T_{rm{eff}}approx$7000~K and an estimated mass of $rm{M1}= 18pm 1$ Msun. This star has likely just finished the H burning phase in the core, started expanding, and is now crossing the Hertzsprung gap. Based on the combination of observed properties, we argue that the progenitor is a binary system, with the more evolved system overfilling the Roche lobe. Comparison with binary evolution models suggests that the outburst was an extremely rare phenomenon, likely associated with the ejection of the common envelope. The initial mass of the binary progenitor system fills the gap between the merger candidates V838 Mon (5$-$10 Msun) and NGC~4490-OT~(30~Msun).
337 - Yun-Hsin Huang 2015
We report a definitive detection of chemically-enriched cool gas around massive, quiescent galaxies at z~0.4-0.7. The result is based on a survey of 37621 luminous red galaxy (LRG)-QSO pairs in SDSS DR12 with projected distance d<500 kpc. The LRGs ar e characterized by a predominantly old (age>~1Gyr) stellar population with 13% displaying [OII] emission features and LINER-like spectra. Both passive and [OII]-emitting LRGs share the same stellar mass distribution with a mean of <log(M*/Msun)>~11.4 and a dispersion of 0.2 dex. Both LRG populations exhibit associated strong MgII absorbers out to d<500 kpc. The mean gas covering fraction at d<~120 kpc is <kappa>_MgII > 15% and declines quickly to <kappa>_MgII ~ 5% at d<~500 kpc. No clear dependence on stellar mass is detected for the observed MgII absorption properties. The observed velocity dispersion of MgII absorbing gas relative to either passive or [OII]-emitting LRGs is merely 60% of what is expected from virial motion in these massive halos. While no apparent azimuthal dependence is seen for <kappa>_MgII around passive LRGs at all radii, a modest enhancement in <kappa>_MgII is detected along the major axis of [OII]-emitting LRGs at d<50 kpc. The suppressed velocity dispersion of MgII absorbing gas around both passive and [OII]-emitting LRGs, together with an elevated <kappa>_MgII along the major axis of [OII]-emitting LRGs at d<50 kpc, provides important insights into the origin of the observed chemically-enriched cool gas in LRG halos. We consider different scenarios and conclude that the observed MgII absorbers around LRGs are best-explained by a combination of cool clouds formed in thermally unstable LRG halos and satellite accretion through filaments.
In the standard model of non-linear structure formation, a cosmic web of dark-matter dominated filaments connects dark matter halos. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between SDSS-III/BOSS luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the $5sigma$ level, finding a mass of $(1.6 pm 0.3) times 10^{13} M_{odot}$ for a stacked filament region 7.1 $h^{-1}$ Mpc long and 2.5 $h^{-1}$ Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt, Jain & Takada (2014), yielding reasonable agreement.
We study the role of major and minor mergers in the mass growth of luminous red galaxies. We present small-scale ($0.01<r<8,hMpc$) projected cross-correlation functions of $23043$ luminous early-type galaxies from the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy (LRG) sample ($0.16<z<0.30$, $MMiapprox -22.75,mag$) with all their companions in the SDSS imaging sample, split into color and luminosity subsamples with $MMi<-18,mag$. We de-project the two-dimensional functions to obtain three-dimensional real-space LRG--galaxy cross-correlation functions for each companion subsample. We find that the cross-correlation functions are not purely power-law and that there is a clear ``one-halo to ``two-halo transition near $1,hMpc$. We convert these results into close pair statistics and estimate the LRG accretion rate from each companion galaxy subsample using timescales from dynamical friction arguments for each subsample of the companions. We find that the accretion onto LRGs is dominated by dry mergers of galaxies more luminous than $Lstar$. We integrate the luminosity accretion rate from mergers over all companion galaxy subsamples and find that LRGs are growing by $[1.7pm 0.1]$ percent per $Gyr$, on average, from merger activity at redshift $zsim 0.25$. This rate is almost certainly an over-estimate because we have assumed that all close pairs are merging as quickly as dynamical friction allows; nonetheless it is on the low side of the panoply of measurements in the literature, and lower than any rate predicted from theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا