ترغب بنشر مسار تعليمي؟ اضغط هنا

Common Envelope ejection for a Luminous Red Nova in M101

127   0   0.0 ( 0 )
 نشر من قبل Nadejda Blagorodnova
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of optical, near-infrared, and mid-infrared observations of M101 OT2015-1 (PSN J14021678+5426205), a luminous red transient in the Pinwheel galaxy (M101), spanning a total of 16 years. The lightcurve showed two distinct peaks with absolute magnitudes $M_rleq-12.4$ and $M_r simeq-12$, on 2014 November 11 and 2015 February 17, respectively. The spectral energy distributions during the second maximum show a cool outburst temperature of $approx$3700 K and low expansion velocities ($approx-$300 kms) for the H I, Ca II, Ba II and K I lines. From archival data spanning 15 to 8 years before the outburst, we find a single source consistent with the optically discovered transient which we attribute to being the progenitor; it has properties consistent with being an F-type yellow supergiant with $L$~$sim$~8.7~$times 10^4$ Lsun, $T_{rm{eff}}approx$7000~K and an estimated mass of $rm{M1}= 18pm 1$ Msun. This star has likely just finished the H burning phase in the core, started expanding, and is now crossing the Hertzsprung gap. Based on the combination of observed properties, we argue that the progenitor is a binary system, with the more evolved system overfilling the Roche lobe. Comparison with binary evolution models suggests that the outburst was an extremely rare phenomenon, likely associated with the ejection of the common envelope. The initial mass of the binary progenitor system fills the gap between the merger candidates V838 Mon (5$-$10 Msun) and NGC~4490-OT~(30~Msun).

قيم البحث

اقرأ أيضاً

We present the results of the study of the red nova PSN J14021678+5426205 based on the observations carried out with the Russian 6-m telescope (BTA) along with other telescopes of SAO RAS and SAI MSU. To investigate the nova progenitor, we used the d ata from the Digital Sky Survey and amateur photos available on the internet. In the period between April 1993 and July 2014, the brightness of the progenitor gradually increased by 2.2 mag in the V band. At the peak of the first outburst in mid-November of 2014, the star reached an absolute visual magnitude of -12.75 mag but was discovered later, in February 2015, in a repeated outburst at the absolute magnitude of -11.65 mag. The amplitude of the outburst was minimum among the red novae, only 5.6 mag in the V band. The H alpha emission line and the continuum of a cool supergiant with a gradually decreasing surface temperature were observed in the spectra. Such process is typical for red novae, although the object under study showed extreme parameters: maximum luminosity, maximum outburst duration, minimum outburst amplitude, unusual shape of the light curve. This event is interpreted as a massive OB star system components merging accompanied by the formation of a common envelope and then the expansion of this envelope with minimal energy losses.
Common-envelope evolution (CEE) is the short-lived phase in the life of an interacting binary-system during which two stars orbit inside a single shared envelope. Such evolution is thought to lead to the inspiral of the binary, the ejection of the ex tended envelope and the formation of a remnant short-period binary. However, detailed hydrodynamical models of CEE encounter major difficulties. They show that following the inspiral most of the envelope is not ejected; though it expands to larger separations, it remains bound to the binary. Here we propose that dust-driven winds can be produced following the CEE. These can evaporate the envelope following similar processes operating in the ejection of the envelopes of AGB stars. Pulsations in an AGB-star drives the expansion of its envelope, allowing the material to cool down to low temperatures thus enabling dust condensation. Radiation pressure on the dust accelerates it, and through its coupling to the gas it drives winds which eventually completely erode the envelope. We show that the inspiral phase in CE-binaries can effectively replace the role of stellar pulsation and drive the CE expansion to scales comparable with those of AGB stars, and give rise to efficient mass-loss through dust-driven winds.
We reconstruct the common envelope (CE) phase for the current sample of observed white dwarf-main sequence post-common envelope binaries (PCEBs). We apply multi-regression analysis in order to investigate whether correlations exist between the CE eje ction efficiencies, alpha_CE, inferred from the sample, and the binary parameters: white dwarf mass, secondary mass, orbital period at the point the CE commences, or the orbital period immediately after the CE phase. We do this with and without consideration for the internal energy of the progenitor primary giants envelope. Our fits should pave the first steps towards an observationally motivated recipe for calculating alpha_CE using the binary parameters at the start of the CE phase, which will be useful for population synthesis calculations or models of compact binary evolution. If we do consider the internal energy of the giants envelope, we find a statistically significant correlation between alpha_CE and the white dwarf mass. If we do not, a correlation is found between alpha_CE and the orbital period at the point the CE phase commences. Furthermore, if the internal energy of the progenitor primary envelope is taken into account, then the CE ejection efficiencies are within the canonical range 0<alpha_CE<=1, although PCEBs with brown dwarf secondaries still require alpha_CE>=1.
Common envelope (CE) phases in binary systems where the primary star reaches the tip of the red giant branch are discussed as a formation scenario for hot subluminous B-type (sdB) stars. For some of these objects, observations point to very low-mass companions. In hydrodynamical CE simulations with the moving-mesh code AREPO, we test whether low-mass objects can successfully unbind the envelope. The success of envelope removal in our simulations critically depends on whether or not the ionization energy released by recombination processes in the expanding material is taken into account. If this energy is thermalized locally, envelope ejection eventually leading to the formation of an sdB star is possible with companion masses down to the brown dwarf range. For even lower companion masses approaching the regime of giant planets, however, envelope removal becomes increasingly difficult or impossible to achieve. Our results are consistent with current observational constraints on companion masses of sdB stars. Based on a semianalytic model, we suggest a new criterion for the lowest companion mass that is capable of triggering a dynamical response of the primary star thus potentially facilitating the ejection of a common envelope. This gives an estimate consistent with the findings of our hydrodynamical simulations.
We present the follow-up campaign of the luminous red nova (LRN) AT~2019zhd, the third event of this class observed in M 31. The object was followed by several sky surveys for about five months before the outburst, during which it showed a slow lumin osity rise. In this phase, the absolute magnitude ranged from M_r=-2.8+-0.2 mag to M_r=-5.6+-0.1 mag. Then, over a four-five day period, AT 2019zhd experienced a major brightening, reaching at peak M_r=-9.61+-0.08 mag, and an optical luminosity of 1.4x10^39 erg/s. After a fast decline, the light curve settled onto a short-duration plateau in the red bands. Although less pronounced, this feature is reminiscent of the second red maximum observed in other LRNe. This phase was followed by a rapid linear decline in all bands. At maximum, the spectra show a blue continuum with prominent Balmer emission lines. The post-maximum spectra show a much redder continuum, resembling that of an intermediate-type star. In this phase, Halpha becomes very weak, Hbeta is no longer detectable and a forest of narrow absorption metal lines now dominate the spectrum. The latest spectra, obtained during the post-plateau decline, show a very red continuum (T_eff ~ 3000 K) with broad molecular bands of TiO, similar to those of M-type stars. The long-lasting, slow photometric rise observed before the peak resembles that of LRN V1309 Sco, which was interpreted as the signature of the common-envelope ejection. The subsequent outburst is likely due to the gas outflow following a stellar merging event. The inspection of archival HST images taken 22 years before the LRN discovery reveals a faint red source (M_F555W=0.21+-0.14 mag, with F555W-F814W = 2.96+-0.12 mag) at the position of AT 2019zhd, which is the most likely quiescent precursor. The source is consistent with expectations for a binary system including a predominant M5-type star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا