ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Training for Unsupervised Parsing with PRPN

60   0   0.0 ( 0 )
 نشر من قبل Anhad Mohananey
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural unsupervised parsing (UP) models learn to parse without access to syntactic annotations, while being optimized for another task like language modeling. In this work, we propose self-training for neural UP models: we leverage aggregated annotations predicted by copies of our model as supervision for future copies. To be able to use our models predictions during training, we extend a recent neural UP architecture, the PRPN (Shen et al., 2018a) such that it can be trained in a semi-supervised fashion. We then add examples with parses predicted by our model to our unlabeled UP training data. Our self-trained model outperforms the PRPN by 8.1% F1 and the previous state of the art by 1.6% F1. In addition, we show that our architecture can also be helpful for semi-supervised parsing in ultra-low-resource settings.



قيم البحث

اقرأ أيضاً

Unsupervised neural machine translation (UNMT) that relies solely on massive monolingual corpora has achieved remarkable results in several translation tasks. However, in real-world scenarios, massive monolingual corpora do not exist for some extreme ly low-resource languages such as Estonian, and UNMT systems usually perform poorly when there is not adequate training corpus for one language. In this paper, we first define and analyze the unbalanced training data scenario for UNMT. Based on this scenario, we propose UNMT self-training mechanisms to train a robust UNMT system and improve its performance in this case. Experimental results on several language pairs show that the proposed methods substantially outperform conventional UNMT systems.
In this work, we use a span-based approach for Vietnamese constituency parsing. Our method follows the self-attention encoder architecture and a chart decoder using a CKY-style inference algorithm. We present analyses of the experiment results of the comparison of our empirical method using pre-training models XLM-Roberta and PhoBERT on both Vietnamese datasets VietTreebank and NIIVTB1. The results show that our model with XLM-Roberta archived the significantly F1-score better than other pre-training models, VietTreebank at 81.19% and NIIVTB1 at 85.70%.
Recent generative adversarial networks (GANs) are able to generate impressive photo-realistic images. However, controllable generation with GANs remains a challenging research problem. Achieving controllable generation requires semantically interpret able and disentangled factors of variation. It is challenging to achieve this goal using simple fixed distributions such as Gaussian distribution. Instead, we propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training. Self-training provides an iterative feedback in the GAN training, from the discriminator to the generator, and progressively improves the proposal of the latent codes as training proceeds. The latent codes are sampled from a latent variable model that is learned in the feature space of the discriminator. We consider a normalized independent component analysis model and learn its parameters through tensor factorization of the higher-order moments. Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder, and is able to discover semantically meaningful latent codes without any supervision. We demonstrate empirically on both cars and faces datasets that each group of elements in the learned code controls a mode of variation with a semantic meaning, e.g. pose or background change. We also demonstrate with quantitative metrics that our method generates better results compared to other approaches.
One daunting problem for semantic parsing is the scarcity of annotation. Aiming to reduce nontrivial human labor, we propose a two-stage semantic parsing framework, where the first stage utilizes an unsupervised paraphrase model to convert an unlabel ed natural language utterance into the canonical utterance. The downstream naive semantic parser accepts the intermediate output and returns the target logical form. Furthermore, the entire training process is split into two phases: pre-training and cycle learning. Three tailored self-supervised tasks are introduced throughout training to activate the unsupervised paraphrase model. Experimental results on benchmarks Overnight and GeoGranno demonstrate that our framework is effective and compatible with supervised training.
Most recently, there has been significant interest in learning contextual representations for various NLP tasks, by leveraging large scale text corpora to train large neural language models with self-supervised learning objectives, such as Masked Lan guage Model (MLM). However, based on a pilot study, we observe three issues of existing general-purpose language models when they are applied to text-to-SQL semantic parsers: fail to detect column mentions in the utterances, fail to infer column mentions from cell values, and fail to compose complex SQL queries. To mitigate these issues, we present a model pre-training framework, Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data. GAP MODEL is trained on 2M utterance-schema pairs and 30K utterance-schema-SQL triples, whose utterances are produced by generative models. Based on experimental results, neural semantic parsers that leverage GAP MODEL as a representation encoder obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-SQL benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا