ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

172   0   0.0 ( 0 )
 نشر من قبل Peng Shi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most recently, there has been significant interest in learning contextual representations for various NLP tasks, by leveraging large scale text corpora to train large neural language models with self-supervised learning objectives, such as Masked Language Model (MLM). However, based on a pilot study, we observe three issues of existing general-purpose language models when they are applied to text-to-SQL semantic parsers: fail to detect column mentions in the utterances, fail to infer column mentions from cell values, and fail to compose complex SQL queries. To mitigate these issues, we present a model pre-training framework, Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data. GAP MODEL is trained on 2M utterance-schema pairs and 30K utterance-schema-SQL triples, whose utterances are produced by generative models. Based on experimental results, neural semantic parsers that leverage GAP MODEL as a representation encoder obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-SQL benchmarks.



قيم البحث

اقرأ أيضاً

We present GraPPa, an effective pre-training approach for table semantic parsing that learns a compositional inductive bias in the joint representations of textual and tabular data. We construct synthetic question-SQL pairs over high-quality tables v ia a synchronous context-free grammar (SCFG) induced from existing text-to-SQL datasets. We pre-train our model on the synthetic data using a novel text-schema linking objective that predicts the syntactic role of a table field in the SQL for each question-SQL pair. To maintain the models ability to represent real-world data, we also include masked language modeling (MLM) over several existing table-and-language datasets to regularize the pre-training process. On four popular fully supervised and weakly supervised table semantic parsing benchmarks, GraPPa significantly outperforms RoBERTa-large as the feature representation layers and establishes new state-of-the-art results on all of them.
223 - Yanyan Zou , Wei Lu 2018
With the development of several multilingual datasets used for semantic parsing, recent research efforts have looked into the problem of learning semantic parsers in a multilingual setup. However, how to improve the performance of a monolingual seman tic parser for a specific language by leveraging data annotated in different languages remains a research question that is under-explored. In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving the performance of a monolingual semantic parser. We extend two existing monolingual semantic parsers to incorporate such cross-lingual distributed logical representations as features. Experiments show that our proposed approach is able to yield improved semantic parsing results on the standard multilingual GeoQuery dataset.
While mainstream machine learning methods are known to have limited ability to compositionally generalize, new architectures and techniques continue to be proposed to address this limitation. We investigate state-of-the-art techniques and architectur es in order to assess their effectiveness in improving compositional generalization in semantic parsing tasks based on the SCAN and CFQ datasets. We show that masked language model (MLM) pre-training rivals SCAN-inspired architectures on primitive holdout splits. On a more complex compositional task, we show that pre-training leads to significant improvements in performance vs. comparable non-pre-trained models, whereas architectures proposed to encourage compositional generalization on SCAN or in the area of algorithm learning fail to lead to significant improvements. We establish a new state of the art on the CFQ compositional generalization benchmark using MLM pre-training together with an intermediate representation.
154 - Ruisheng Cao , Su Zhu , Chen Liu 2019
Semantic parsing converts natural language queries into structured logical forms. The paucity of annotated training samples is a fundamental challenge in this field. In this work, we develop a semantic parsing framework with the dual learning algorit hm, which enables a semantic parser to make full use of data (labeled and even unlabeled) through a dual-learning game. This game between a primal model (semantic parsing) and a dual model (logical form to query) forces them to regularize each other, and can achieve feedback signals from some prior-knowledge. By utilizing the prior-knowledge of logical form structures, we propose a novel reward signal at the surface and semantic levels which tends to generate complete and reasonable logical forms. Experimental results show that our approach achieves new state-of-the-art performance on ATIS dataset and gets competitive performance on Overnight dataset.
Pre-trained self-supervised models such as BERT have achieved striking success in learning sequence representations, especially for natural language processing. These models typically corrupt the given sequences with certain types of noise, such as m asking, shuffling, or substitution, and then try to recover the original input. However, such pre-training approaches are prone to learning representations that are covariant with the noise, leading to the discrepancy between the pre-training and fine-tuning stage. To remedy this, we present ContrAstive Pre-Training (CAPT) to learn noise invariant sequence representations. The proposed CAPT encourages the consistency between representations of the original sequence and its corrupted version via unsupervised instance-wise training signals. In this way, it not only alleviates the pretrain-finetune discrepancy induced by the noise of pre-training, but also aids the pre-trained model in better capturing global semantics of the input via more effective sentence-level supervision. Different from most prior work that focuses on a particular modality, comprehensive empirical evidence on 11 natural language understanding and cross-modal tasks illustrates that CAPT is applicable for both language and vision-language tasks, and obtains surprisingly consistent improvement, including 0.6% absolute gain on GLUE benchmarks and 0.8% absolute increment on $text{NLVR}^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا