ﻻ يوجد ملخص باللغة العربية
We build a holographic $s$-wave conductor/superconductor model and an insulator/superconductor model in the four-dimensional conformal anomaly corrected~(CAC) AdS gravity. The effects of CAC parameter $alpha$ are studied using both numerical and analytical methods in the probe approximation. Concretely, when the CAC parameter increases, the critical temperature increases for the conductor/superconductor phase transition, while the critical chemical potential decreases for the insulator/superconductor case, which suggests that the increasing CAC parameter enhances both superconducting phase transitions. Meanwhile, below the critical temperature or beyond the critical chemical potential, the scalar hair begins to condense, and the condensed phases are found to be thermodynamically stable. The critical behaviors obtained from numerics are confirmed by our analytical analysis. For the parameters we are considering, the energy gap in the conductor/superconductor model decreases monotonically by increasing the CAC parameter, while for the insulator/superconductor model the energy of quasiparticle excitations decreases with the CAC parameter.
We consider the generalization of the S-duality transformation previously investigated in the context of the FQHE and s-wave superconductivity to p-wave superconductivity in 2+1 dimensions in the framework of the AdS/CFT correspondence. The vector Co
We study the (3+1) dimensional p-wave holographic superconductors with Weyl corrections both numerically and analytically. We describe numerically the behavior of critical temperature $T_{c}$ with respect to charge density $rho$ in a limited range of
We study $(1+1)$-dimensional p-wave holographic superconductors described by three dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of $AdS_3/CFT_2$ correspondence. In the probe limit where the backreation
We obtain (2+1) dimensional p-wave holographic superconductors from charged Born-Infeld black holes in the presence of massive charged vector fields in a bulk $AdS_4$ Einstein-Born-Infeld theory through the $AdS_4$-$CFT_3$ correspondence. Below a cer
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points a