ﻻ يوجد ملخص باللغة العربية
In the era of advanced electromagnetic and gravitational wave detectors, it has become increasingly important to effectively combine and study the impact of stellar evolution on binaries and dynamical systems of stars. Systematic studies dedicated to exploring uncertain parameters in stellar evolution are required to account for the recent observations of the stellar populations. We present a new approach to the commonly used Single-Star Evolution (SSE) fitting formulae, one that is more adaptable: Method of Interpolation for Single Star Evolution (METISSE). It makes use of interpolation between sets of pre-computed stellar tracks to approximate evolution parameters for a population of stars. We have used METISSE with detailed stellar tracks computed by the Modules for Experiments in Stellar Astrophysics (MESA), Bonn Evolutionary Code (BEC) and Cambridge STARS code. METISSE better reproduces stellar tracks computed using the STARS code compared to SSE, and is on average three times faster. Using stellar tracks computed with MESA and BEC, we apply METISSE to explore the differences in the remnant masses, the maximum radial expansion, and the main-sequence lifetime of massive stars. We find that different physical ingredients used in the evolution of stars, such as the treatment of radiation dominated envelopes, can impact their evolutionary outcome. For stars in the mass range 9 to 100 M$_odot$, the predictions of remnant masses can vary by up to 20 M$_odot$, while the maximum radial expansion achieved by a star can differ by an order of magnitude between different stellar models.
We assess the systematic uncertainties in stellar evolutionary calculations for low- to intermediate-mass, main-sequence stars. We compare published stellar tracks from several different evolution codes with our own tracks computed using the stellar
The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SM
In this work, we investigate the impact of uncertainties due to convective boundary mixing (CBM), commonly called `overshoot, namely the boundary location and the amount of mixing at the convective boundary, on stellar structure and evolution. For th
Numerous physical aspects of stellar physics have been presented in Ses- sion 2 and the underlying uncertainties have been tentatively assessed. We try here to highlight some specific points raised after the talks and during the general discus- sion
The rotational evolution of cool dwarfs is poorly constrained after around 1-2 Gyr due to a lack of precise ages and rotation periods for old main-sequence stars. In this work we use velocity dispersion as an age proxy to reveal the temperature-depen