ﻻ يوجد ملخص باللغة العربية
The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have less concentrated structure than fully-convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit $gtrsim 10^5~M_odot$ derived for the fully-convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with $dot M lesssim 0.1~M_odot~{rm yr}^{-1}$. With $dot{M} simeq 0.3 - 1~M_odot~{rm yr}^{-1}$, the star becomes GR-unstable during the helium-burning stage at $M simeq 2 - 3.5~times 10^5~M_odot$. In an extreme case with $10~M_odot~{rm yr}^{-1}$, the star does not collapse until the mass reaches $simeq 8.0times 10^5~M_odot$, where it is still in the hydrogen-burning stage. We expect that BHs with roughly the same mass will be left behind after the collapse in all the cases.
Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z~6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretio
Major mergers of gas-rich galaxies provide promising conditions for the formation of supermassive black holes (SMBHs; $gtrsim10^5$ M$_odot$) by direct collapse because they can trigger mass inflows as high as $10^4-10^5$ M$_odot$ yr$^{-1}$ on sub-par
Primordial supermassive stars (SMSs) formed in atomic-cooling halos at z ~ 15 - 20 are leading candidates for the seeds of the first quasars. Past numerical studies of the evolution of SMSs have typically assumed constant accretion rates rather than
Supermassive stars (SMS; ~ 10^5 M_sun) formed from metal-free gas in the early Universe attract attention as progenitors of supermassive black holes observed at high redshifts. To form SMSs by accretion, central protostars must accrete at as high rat
We investigate the possibility of a supernova in supermassive ($5 times 10^4 ;M_odot$) population III stars induced by a general relativistic instability occurring in the helium burning phase. This explosion could occur via rapid helium burning durin