ﻻ يوجد ملخص باللغة العربية
We analyze an interacting queueing network on $mathbb{Z}^d$ that was introduced in Sankararaman-Baccelli-Foss (2019) as a model for wireless networks. We show that the marginals of the minimal stationary distribution have exponential tails. This is used to furnish asymptotics for the maximum steady state queue length in growing boxes around the origin. We also establish a decay of correlations which shows that the minimal stationary distribution is strongly mixing, and hence, ergodic with respect to translations on $mathbb{Z}^d$.
Importance sampling is a technique that is commonly used to speed up Monte Carlo simulation of rare events. However, little is known regarding the design of efficient importance sampling algorithms in the context of queueing networks. The standard ap
We consider a queueing system consisting of two non-identical exponential servers, where each server has its own dedicated queue and serves the customers in that queue FCFS. Customers arrive according to a Poisson process and join the queue promising
We study analytically a variant of the one-dimensional majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors opinions. The individuals are fixed in the sites of a ring of size $L$ and can interact
In this paper we revisit the results of Loynes (1962) on stability of queues for ergodic arrivals and services, and show examples when the arrivals are bounded and ergodic, the service rate is constant, and under stability the limit distribution has larger than exponential tail.
This paper studies load balancing for many-server ($N$ servers) systems. Each server has a buffer of size $b-1,$ and can have at most one job in service and $b-1$ jobs in the buffer. The service time of a job follows the Coxian-2 distribution. We foc