ﻻ يوجد ملخص باللغة العربية
Importance sampling is a technique that is commonly used to speed up Monte Carlo simulation of rare events. However, little is known regarding the design of efficient importance sampling algorithms in the context of queueing networks. The standard approach, which simulates the system using an a priori fixed change of measure suggested by large deviation analysis, has been shown to fail in even the simplest network setting (e.g., a two-node tandem network). Exploiting connections between importance sampling, differential games, and classical subsolutions of the corresponding Isaacs equation, we show how to design and analyze simple and efficient dynamic importance sampling schemes for general classes of networks. The models used to illustrate the approach include $d$-node tandem Jackson networks and a two-node network with feedback, and the rare events studied are those of large queueing backlogs, including total population overflow and the overflow of individual buffers.
We consider the distributional fixed-point equation: $$R stackrel{mathcal{D}}{=} Q vee left( bigvee_{i=1}^N C_i R_i right),$$ where the ${R_i}$ are i.i.d.~copies of $R$, independent of the vector $(Q, N, {C_i})$, where $N in mathbb{N}$, $Q, {C_i} geq
Adaptive Monte Carlo methods are very efficient techniques designed to tune simulation estimators on-line. In this work, we present an alternative to stochastic approximation to tune the optimal change of measure in the context of importance sampling
We analyze an interacting queueing network on $mathbb{Z}^d$ that was introduced in Sankararaman-Baccelli-Foss (2019) as a model for wireless networks. We show that the marginals of the minimal stationary distribution have exponential tails. This is u
Coupling from the past (CFTP) methods have been used to generate perfect samples from finite Gibbs hard-sphere models, an important class of spatial point processes, which is a set of spheres with the centers on a bounded region that are distributed
This paper makes three contributions to estimating the number of perfect matching in bipartite graphs. First, we prove that the popular sequential importance sampling algorithm works in polynomial time for dense bipartite graphs. More carefully, our