ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical detection of spin liquids in double moire layers

78   0   0.0 ( 0 )
 نشر من قبل Yahui Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although spin is a fundamental quantum number, measuring spin transport in traditional solid state systems is extremely challenging. This poses a major obstacle to detecting interesting quantum states including certain spin liquids. In this paper we propose a platform that not only allows for the electrical measurement of spin transport, but in which a variety of exotic quantum phases may be stabilized. Our proposal involves two moire superlattices, built from transition metal dichalcogenides (TMD) or graphene, separated from one another by a thin insulating layer. The two Coulomb coupled moire layers, when suitably aligned, give rise to a layer pseudospin degree of freedom. The transport of pseudospin can be accessed from purely electrical measurements of counter-flow or Coulomb drag conductivity. Furthermore, these platforms naturally realize Hubbard models on the triangular lattice with $N = 4, {rm or}, 8$ flavors. The flavor degeneracy motivates a large-N approximation from which we obtain the phase diagram of Mott insulators at different electron fillings and correlation strengths. In addition to conventional phases such as psuedospin superfluids and crystallized insulators, exotic phases including chiral spin liquids and a $U(1)$ spinon Fermi surface spin liquid are also found, all of which will show smoking gun electrical signatures in this setup.

قيم البحث

اقرأ أيضاً

Twisting moire heterostructures to the flatband regime allows for the formation of strongly correlated quantum states, since the dramatic reduction of the bandwidth can cause the residual electronic interactions to set the principal energy scale. An effective description for such correlated moire heterostructures, derived in the strong-coupling limit at integer filling, generically leads to spin-valley Heisenberg models. Here we explore the emergence and stability of spin liquid behavior in an SU(2)$^{mathrm{spin}}otimes$SU(2)$^{mathrm{valley}}$ Heisenberg model upon inclusion of Hunds-induced and longer-ranged exchange couplings, employing a pseudofermion functional renormalization group approach. We consider two lattice geometries, triangular and honeycomb (relevant to different moire heterostructures), and find, for both cases, an extended parameter regime surrounding the SU(4) symmetric point where no long-range order occurs, indicating a stable realm of quantum spin liquid behavior. For large Hunds coupling, we identify the adjacent magnetic orders, with both antiferromagnetic and ferromagnetic ground states emerging in the separate spin and valley degrees of freedom. For both lattice geometries the inclusion of longer-ranged exchange couplings is found to have both stabilizing and destabilizing effects on the spin liquid regime depending on the sign of the additional couplings.
We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our appro ach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground state degeneracy on the torus signalling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.
We show that gapless spin liquids, which are potential candidates to describe the ground state of frustrated Heisenberg models in two dimensions, become trivial insulators on cylindrical geometries with an even number of legs. In particular, we repor t calculations for Gutzwiller-projected fermionic states on strips of square and kagome lattices. By choosing different boundary conditions for the fermionic degrees of freedom, both gapless and gapped states may be realized, the latter ones having a lower variational energy. The direct evaluation of static and dynamical correlation functions, as well as overlaps between different states, allows us to demonstrate the sharp difference between the ground-state properties obtained within cylinders or directly in the two-dimensional lattice. Our results shed light on the difficulty to detect bona fide gapless spin liquids in such cylindrical geometries.
Spin liquids are quantum phases of matter that exhibit a variety of novel features associated with their topological character. These include various forms of fractionalization - elementary excitations that behave as fractions of an electron. While t here is not yet entirely convincing experimental evidence that any particular material has a spin liquid ground state, in the past few years, increasing evidence has accumulated for a number of materials suggesting that they have characteristics strongly reminiscent of those expected for a quantum spin liquid.
The Kondo insulator compound SmB6 has emerged as a strong candidate for the realization of a topologically nontrivial state in a strongly correlated system, a topological Kondo insulator, which can be a novel platform for investigating the interplay between nontrivial topology and emergent correlation driven phenomena in solid state systems. Electronic transport measurements on this material, however, so far showed only the robust surface dominated charge conduction at low temperatures, lacking evidence of its connection to the topological nature by showing, for example, spin polarization due to spin momentum locking. Here, we find evidence for surface state spin polarization by electrical detection of a current induced spin chemical potential difference on the surface of a SmB6 single crystal. We clearly observe a surface dominated spin voltage, which is proportional to the projection of the spin polarization onto the contact magnetization, is determined by the direction and magnitude of the charge current and is strongly temperature dependent due to the crossover from surface to bulk conduction. We estimate the lower bound of the surface state net spin polarization as 15 percent based on the quantum transport model providing direct evidence that SmB6 supports metallic spin helical surface states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا