ﻻ يوجد ملخص باللغة العربية
Spectroscopic studies play a key role in the identification and analysis of interstellar ices and their structure. Some molecules have been identified within the interstellar ices either as pure, mixed, or even as layered structures. Absorption band features of water ice can significantly change with the presence of different types of impurities (CO, CO2, CH3OH, H2CO, etc.). In this work, we carried out a theoretical investigation to understand the behavior of water band frequency, and strength in the presence of impurities. The computational study has been supported and complemented by some infrared spectroscopy experiments aimed at verifying the effect of HCOOH, NH3 , and CH3 OH on the band profiles of pure H2O ice. Specifically, we explored the effect on the band strength of libration, bending, bulk stretching, and free-OH stretching modes. Computed band strength profiles have been compared with our new and existing experimental results, thus pointing out that vibrational modes of H2O and their intensities can change considerably in the presence of impurities at different concentrations. In most cases, the bulk stretching mode is the most affected vibration, while the bending is the least affected mode. HCOOH was found to have a strong influence on the libration, bending, and bulk stretching band profiles. In the case of NH3, the free-OH stretching band disappears when the impurity concentration becomes 50%. This work will ultimately aid a correct interpretation of future detailed spaceborne observations of interstellar ices by means of the upcoming JWST mission.
Heavily obscured active galactic nuclei (AGNs) are known to show deep silicate absorption features in the mid-infrared (IR) wavelength range of 10--20~$mu$m. The detailed profiles of the features reflect the properties of silicate dust, which are lik
In this work, we reexamine sulfur chemistry occurring on and in the ice mantles of interstellar dust grains, and report the effects of two new modifications to standard astrochemical models; namely, (a) the incorporation of cosmic ray-driven radiatio
We present a model for the formation of large organic molecules in dark clouds. The molecules are produced in the high density gas-phase that exists immediately after ice mantles are explosively sublimated. The explosions are initiated by the catastr
Isolated dense molecular cores are investigated to study the onset of complex organic molecule formation in interstellar ice. Sampling three cores with ongoing formation of low-mass stars (B59, B335, and L483) and one starless core (L694-2) we sample
Context. Methane is among the main components of the ice mantles of insterstellar dust grains, where it is at the start of a rich solid-phase chemical network. Quantification of the photon-induced desorption yield of these frozen molecules and unders