ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-dependent study of near-infrared disk emission lines in LB-1

157   0   0.0 ( 0 )
 نشر من قبل Song Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mass, origin and evolutionary stage of the binary system LB-1 has been the subject of intense debate, following the claim that it hosts an $sim$70$M_{odot}$ black hole, in stark contrast with the expectations for stellar remnants in the Milky Way. We conducted a high-resolution, phase-resolved spectroscopic study of the near-infrared Paschen lines in this system, using the 3.5-m telescope at Calar Alto Observatory. We find that Pa$beta$ and Pa$gamma$ (after proper subtraction of the stellar absorption component) are well fitted with a standard double-peaked model, typical of disk emission. We measured the velocity shifts of the red and blue peaks at 28 orbital phases: the line center has an orbital motion in perfect antiphase with the stellar motion, and the radial velocity amplitude ranges from 8 to 13 km/s for different choices of lines and profile modelling. We interpret this curve as proof that the disk is tracing the orbital motion of the primary, ruling out the circumbinary disk and the hierarchical triple scenarios. The phase-averaged peak-to-peak half-separation (proxy for the projected rotational velocity of the outer disk) is $sim$70 km s$^{-1}$, larger than the stellar orbital velocity and also inconsistent with a circumbinary disk. From those results, we infer a primary mass 4--8 times higher than the secondary mass. Moreover, we show that the ratio of the blue and red peaks (V/R intensity ratio) has a sinusoidal behaviour in phase with the secondary star, which can be interpreted as the effect of external irradiation by the secondary star on the outer disk. Finally, we briefly discuss our findings in the context of alternative scenarios recently proposed for LB-1. Definitive tests between alternative solutions will require further astrometric data from $Gaia$.



قيم البحث

اقرأ أيضاً

66 - N. C. Sterling 2017
We identify [Se III] 1.0994 micron in the planetary nebula (PN) NGC 5315 and [Kr VI] 1.2330 micron in three PNe, from spectra obtained with the FIRE spectrometer on the 6.5-m Baade Telescope. Se and Kr are the two most widely-detected neutron-capture elements in astrophysical nebulae, and can be enriched by s-process nucleosynthesis in PN progenitor stars. The detection of [Se III] 1.0994 micron is particularly valuable when paired with observations of [Se IV] 2.2858 micron, as it can be used to improve the accuracy of nebular Se abundance determinations, and allows Se ionization correction factor (ICF) schemes to be empirically tested for the first time. We present new effective collision strength calculations for Se^{2+} and Kr^{5+}, which we use to compute ionic abundances. In NGC 5315, we find that the Se abundance computed from Se^{3+}/H^+ is lower than that determined with ICFs that incorporate Se^{2+}/H^+. We compute new Kr ICFs that take Kr^{5+}/H^+ into account, by fitting correlations found in grids of Cloudy models between Kr ionic fractions and those of more abundant elements, and use these to derive Kr abundances in four PNe. Observations of [Se III] and [Kr VI] in a larger sample of PNe, with a range of excitation levels, are needed to rigorously test the ICF prescriptions for Se and our new Kr ICFs.
We analyze high-resolution (dv=<10km/s) optical and infrared spectra covering the [OI] 6300 angstrom and [NeII] 12.81 micron lines from a sample of 31 disks in different evolutionary stages. Following work at optical wavelengths, we use Gaussian prof iles to fit the [NeII] lines and classify them into HVC (LVC) if the line centroid is more (less) blueshifted than 30 km/s with respect to the stellar radial velocity. Unlike for the [OI] where a HVC is often accompanied by a LVC, all 17 sources with a [NeII] detection have either a HVC or a LVC. [NeII] HVCs are preferentially detected toward high accretors (Macc > 10$^{-8}$ Msun/yr) while LVCs are found in sources with low Macc, low [OI] luminosity, and large infrared spectral index (n13-31). Interestingly, the [NeII] and [OI] LVC luminosities display an opposite behaviour with n13-31: as the inner dust disk depletes (higher n13-31) the [NeII] luminosity increases while the [OI] weakens. The [NeII] and [OI] HVC profiles are generally similar with centroids and FWHMs showing the expected behaviour from shocked gas in micro-jets. In contrast, the [NeII] LVC profiles are typically more blueshifted and narrower than the [OI] profiles. The FWHM and centroid vs. disk inclination suggest that the [NeII] LVC predominantly traces unbound gas from a slow, wide-angle wind that has not lost completely the Keplerian signature from its launching region. We sketch an evolutionary scenario that could explain the combined [OI] and [NeII] results and includes screening of hard (~1keV) X-rays in inner, mostly molecular, MHD winds.
157 - Daniel Harsono 2013
(Abridged) Star and planet formation theories predict an evolution in the density, temperature, and velocity structure as the envelope collapses and forms an accretion disk. The aim of this work is to model the evolution of the molecular excitation, line profiles, and related observables during low-mass star formation. Specifically, the signatures of disks during the deeply embedded stage are investigated. Semi-analytic 2D axisymmetric models have been used to describe the evolution of the density, stellar mass, and luminosity from the pre-stellar to the T-Tauri phase. A full radiative transfer calculation is carried out to accurately determine the time-dependent dust temperatures and CO abundance structure. We present non-LTE near-IR, FIR, and submm lines of CO have been simulated at a number of time steps. In contrast to the dust temperature, the CO excitation temperature derived from submm/FIR lines does not vary during the protostellar evolution, consistent with C18O observations obtained with Herschel and from ground-based telescopes. The near-IR spectra provide complementary information to the submm lines by probing not only the cold outer envelope but also the warm inner region. The near-IR high-J (>8) absorption lines are particularly sensitive to the physical structure of the inner few AU, which does show evolution. High signal-to-noise ratio subarcsec resolution data with ALMA are needed to detect the presence of small rotationally supported disks during the Stage 0 phase and various diagnostics are discussed.
We present observations of ro-vibrational OH and CO emission from the Herbig Be star HD 100546. The emission from both molecules arises from the inner region of the disk extending from approximately 13 AU from the central star. The velocity profiles of the OH lines are narrower than the velocity profile of the [O I] 6300 Angstrom line indicating that the OH in the disk is not cospatial with the O I. This suggests that the inner optically thin region of the disk is largely devoid of molecular gas. Unlike the ro-vibrational CO emission lines, the OH lines are highly asymmetric. We show that the average CO and average OH line profiles can be fit with a model of a disk comprised of an eccentric inner wall and a circular outer disk. In this model, the vast majority of the OH flux (75%) originates from the inner wall, while the vast majority of the CO flux (65%) originates on the surface of the disk at radii greater than 13 AU. Eccentric inner disks are predicted by hydrodynamic simulations of circumstellar disks containing an embedded giant planet. We discuss the implications of such a disk geometry in light of models of planet disk tidal interactions and propose alternate explanations for the origin of the asymmetry.
229 - S. D. Brittain 2009
We present new high-resolution infrared echelle spectra of V1647 Ori, the young star that illuminates McNeils nebula. From the start, V1647 Ori has been an enigmatic source that has defied classification, in some ways resembling eruptive stars of the FUor class and in other respects the EXor variables. V1647 Ori underwent an outburst in 2003 before fading back to its pre-outburst brightness in 2006. In 2008, it underwent a new outburst. In this paper we present high-resolution K-band and M-band spectra from the W. M. Keck Observatory that were acquired during the 2008 outburst. We compare the spectra to spectra acquired during the previous outburst and quiescent phases. We find that the luminosity and full width at half maximum power of Br-gamma increased as the star has brightened and decreased when the star faded indicating that these phases are driven by variations in the accretion rate. We also show that the temperature of the CO emission has varied with the stellar accretion rate confirming suggestions from modeling of the heating mechanisms of the inner disk (e.g. Glassgold et al. 2004). Finally we find that the lowest energy blue-shifted CO absorption lines originally reported in 2007 are no longer detected. The absence of these lines confirms the short-lived nature of the outflow launched at the start of the quiescent phase in 2006.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا