ﻻ يوجد ملخص باللغة العربية
We construct holomorphically varying families of Fatou-Bieberbach domains with given centres in the complement of any compact polynomially convex subset $K$ of $mathbb C^n$ for $n>1$. This provides a simple proof of the recent result of Yuta Kusakabe to the effect that the complement $mathbb C^nsetminus K$ of any polynomially convex subset $K$ of $mathbb C^n$ is an Oka manifold. The analogous result is obtained with $mathbb C^n$ replaced by any Stein manifold with the density property.
Nirenberg and Spencer posed the question whether the germ of a compact complex submanifold in a complex manifold is determined by its infinitesimal neighborhood of finite order when the normal bundle is sufficiently positive. To study the problem for
Classically, theorems of Fatou and Julia describe the boundary regularity of functions in one complex variable. The former says that a complex analytic function on the disk has non-tangential boundary values almost everywhere, and the latter describe
We extend the concept of a finite dimensional {it holomorphic homogeneous regular} (HHR) domain and some of its properties to the infinite dimensional setting. In particular, we show that infinite dimensional HHR domains are domains of holomorphy and
We show that the efficiency of a natural pairing between certain projectively invariant Hardy spaces on dual strongly C-linearly convex real hypersurfaces in complex projective space is measured by the norm of the corresponding Leray transform.
In this paper we find big Euclidean domains in complex manifolds. We consider open neighbourhoods of sets of the form $Kcup M$ in a complex manifold $X$, where $K$ is a compact $mathscr O(U)$-convex set in an open Stein neighbourhood $U$ of $K$, $M$