ترغب بنشر مسار تعليمي؟ اضغط هنا

Euclidean domains in complex manifolds

118   0   0.0 ( 0 )
 نشر من قبل Franc Forstneric
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Franc Forstneric




اسأل ChatGPT حول البحث

In this paper we find big Euclidean domains in complex manifolds. We consider open neighbourhoods of sets of the form $Kcup M$ in a complex manifold $X$, where $K$ is a compact $mathscr O(U)$-convex set in an open Stein neighbourhood $U$ of $K$, $M$ is an embedded Stein submanifold of $X$, and $Kcap M$ is compact and $mathscr O(M)$-convex. We prove a Docquier-Grauert type theorem concerning biholomorphic equivalence of neighbourhoods of such sets, and we give sufficient conditions for the existence of Stein neighbourhoods of $Kcup M$, biholomorphic to domains in $mathbb C^n$ with $n=dim X$, such that $M$ is mapped onto a closed complex submanifold of $mathbb C^n$.



قيم البحث

اقرأ أيضاً

We prove that two smooth families of 2-connected domains in $cc$ are smoothly equivalent if they are equivalent under a possibly discontinuous family of biholomorphisms. We construct, for $m geq 3$, two smooth families of smoothly bounded $m$-connect ed domains in $cc$, and for $ngeq2$, two families of strictly pseudoconvex domains in $cc^n$, that are equivalent under discontinuous families of biholomorphisms but not under any continuous family of biholomorphisms. Finally, we give sufficient conditions for the smooth equivalence of two smooth families of domains.
The second named author and David Kalaj introduced a pseudometric on any domain in the real Euclidean space $mathbb R^n$, $nge 3$, defined in terms of conformal harmonic discs, by analogy with Kobayashis pseudometric on complex manifolds, which is de fined in terms of holomorphic discs. They showed that on the unit ball of $mathbb R^n$, this minimal metric coincides with the classical Beltrami-Cayley-Klein metric. In the present paper we investigate properties of the minimal pseudometric and give sufficient conditions for a domain to be (complete) hyperbolic, meaning that the minimal pseudometric is a (complete) metric. We show in particular that a domain having a negative minimal plurisubharmonic exhaustion function is hyperbolic, and a bounded strongly minimally convex domain is complete hyperbolic. We also prove a localization theorem for the minimal pseudometric. Finally, we show that a convex domain is complete hyperbolic if and only if it does not contain any affine 2-plane.
58 - Naveen Gupta 2018
This is an expository survey of the Jacobian problem for the class of Pluriharmonic functions.
258 - Andrea Altomani 2009
We investigate the $CR$ geometry of the orbits $M$ of a real form $G_0$ of a complex simple group $G$ in a complex flag manifold $X=G/Q$. We are mainly concerned with finite type, Levi non-degeneracy conditions, canonical $G_0$-equivariant and Mostow fibrations, and topological properties of the orbits.
We study, from the point of view of CR geometry, the orbits M of a real form G of a complex semisimple Lie group G in a complex flag manifold G/Q. In particular we characterize those that are of finite type and satisfy some Levi nondegeneracy conditi ons. These properties are also graphically described by attaching to them some cross-marked diagrams that generalize those for minimal orbits that we introduced in a previous paper. By constructing canonical fibrations over real flag manifolds, with simply connected complex fibers, we are also able to compute their fundamental group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا