ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin of Antibunching in Resonance Fluorescence

292   0   0.0 ( 0 )
 نشر من قبل Lukas Hanschke
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial quantum dots have emerged as one of the best single-photon sources, not only for applications in photonic quantum technologies but also for testing fundamental properties of quantum optics. One intriguing observation in this area is the scattering of photons with subnatural linewidth from a two-level system under resonant continuous wave excitation. In particular, an open question is whether these subnatural linewidth photons exhibit simultaneously antibunching as an evidence of single-photon emission. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. First, we independently confirm single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our experimental work is consistent with recent theoretical findings, that explain antibunching from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state.



قيم البحث

اقرأ أيضاً

Photonic quantum technologies call for scalable quantum light sources that can be integrated, while providing the end user with single and entangled photons on-demand. One promising candidate are strain free GaAs/AlGaAs quantum dots obtained by dropl et etching. Such quantum dots exhibit ultra low multi-photon probability and an unprecedented degree of photon pair entanglement. However, different to commonly studied InGaAs/GaAs quantum dots obtained by the Stranski-Krastanow mode, photons with a near-unity indistinguishability from these quantum emitters have proven to be elusive so far. Here, we show on-demand generation of near-unity indistinguishable photons from these quantum emitters by exploring pulsed resonance fluorescence. Given the short intrinsic lifetime of excitons confined in the GaAs quantum dots, we show single photon indistinguishability with a raw visibility of $V_{raw}=(94.2pm5.2),%$, without the need for Purcell enhancement. Our results represent a milestone in the advance of GaAs quantum dots by demonstrating the final missing property standing in the way of using these emitters as a key component in quantum communication applications, e.g. as an entangled source for quantum repeater architectures.
We temporally resolve the resonance fluorescence from an electron spin confined to a single self-assembled quantum dot to measure directly the spins optical initialization and natural relaxation timescales. Our measurements demonstrate that spin init ialization occurs on the order of microseconds in the Faraday configuration when a laser resonantly drives the quantum dot transition. We show that the mechanism mediating the optically induced spin-flip changes from electron-nuclei interaction to hole-mixing interaction at 0.6 Tesla external magnetic field. Spin relaxation measurements result in times on the order of milliseconds and suggest that a $B^{-5}$ magnetic field dependence, due to spin-orbit coupling, is sustained all the way down to 2.2 Tesla.
We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths. We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime--a hallmark of resonance fluorescence. The measured resonance-flu orescence spectra allow us to rule out pure dephasing as a significant decoherence mechanism in these quantum dots. Combined with numerical simulations, the experimental results provide robust characterisation of charge noise in the environment of the quantum dot. Resonant control of the quantum dot opens up new possibilities for on-demand generation of indistinguishable single photons at telecom wavelengths as well as quantum optics experiments and direct manipulation of solid-state qubits in telecom-wavelength quantum dots.
The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the tran sition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dots nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding.
We investigate the correlations of magnons inside a nanomagnet and identify a regime of parameters where the magnons become antibunched, i.e., where there is a large probability for occupation of the single-magnon state. This antibunched state is ver y different from magnons at thermal equilibrium and microwave-driven coherent magnons. We further obtain the steady state analytically and describe the magnon dynamics numerically, and ascertain the stability of such antibunched magnons over a large window of magnetic anisotropy, damping and temperature. This means that the antibunched magnon state is feasible in a wide class of low-damping magnetic nanoparticles. To detect this quantum effect, we propose to transfer the quantum information of magnons to photons by magnon-photon coupling and then measure the correlations of photons to retrieve the magnon correlations. Our findings may provide a promising platform to study quantum-classical transitions and for designing a single magnon source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا