ﻻ يوجد ملخص باللغة العربية
Stone-type dualities provide a powerful mathematical framework for studying properties of logical systems. They have recently been fruitfully explored in understanding minimisation of various types of automata. In Bezhanishvili et al. (2012), a dual equivalence between a category of coalgebras and a category of algebras was used to explain minimisation. The algebraic semantics is dual to a coalgebraic semantics in which logical equivalence coincides with trace equivalence. It follows that maximal quotients of coalgebras correspond to minimal subobjects of algebras. Examples include partially observable deterministic finite automata, linear weighted automata viewed as coalgebras over finite-dimensional vector spaces, and belief automata, which are coalgebras on compact Hausdorff spaces. In Bonchi et al. (2014), Brzozowskis double-reversal minimisation algorithm for deterministic finite automata was described categorically and its correctness explained via the duality between reachability and observability. This work includes generalisations of Brzozowskis algorithm to Moore and weighted automata over commutative semirings. In this paper we propose a general categorical framework within which such minimisation algorithms can be understood. The goal is to provide a unifying perspective based on duality. Our framework consists of a stack of three interconnected adjunctions: a base dual adjunction that can be lifted to a dual adjunction between coalgebras and algebras and also to a dual adjunction between automata. The approach provides an abstract understanding of reachability and observability. We illustrate the general framework on range of concrete examples, including deterministic Kripke frames, weighted automata, topological automata (belief automata), and alternating automata.
Appel and McAllesters step-indexed logical relations have proven to be a simple and effective technique for reasoning about programs in languages with semantically interesting types, such as general recursive types and general reference types. Howeve
While quantum computers are expected to yield considerable advantages over classical devices, the precise features of quantum theory enabling these advantages remain unclear. Contextuality--the denial of a notion of classical physical reality--has em
The main aim of the present paper is to use a proof system for hybrid modal logic to formalize what are called falsebelief tasks in cognitive psychology, thereby investigating the interplay between cognition and logical reasoning about belief. We consider two differe
Model checking timed automata becomes increasingly complex with the increase in the number of clocks. Hence it is desirable that one constructs an automaton with the minimum number of clocks possible. The problem of checking whether there exists a ti
Intersection types are an essential tool in the analysis of operational and denotational properties of lambda-terms and functional programs. Among them, non-idempotent intersection types provide precise quantitative information about the evaluation o