ﻻ يوجد ملخص باللغة العربية
In this work we present an update to a previous calculation of the Next-to-Leading Order (NLO) corrections to the Vector Dark Matter (VDM) direct detection cross section. The model under investigation is a minimal extension of the Standard Model (SM) with one extra vector boson and one extra complex scalar field, where the vector is the DM candidate. We have computed the spin-independent cross section for the scattering of the VDM particle with a nucleon. We now provide an update to the NLO cross section for the direct detection of the DM particle. We further discuss the phenomenological implications of the NLO corrections for the sensitivity of the direct detection DM experiments.
Although many astrophysical and cosmological observations point towards the existence of Dark Matter (DM), the nature of the DM particle has not been clarified to date. In this paper, we investigate a minimal model with a vector DM (VDM) candidate. W
We present updated results on the complementarity between high-energy colliders and dark matter direct detection experiments in the context of Universal Extra Dimensions (UED). In models with relatively small mass splittings between the dark matter c
Direct detection of light dark matter (DM), below the GeV scale, through electron recoil can be efficient if DM has a velocity well above the virial value of $vsim 10^{-3}$. We point out that if there is a long range attractive force sourced by bulk
We provide expressions for the nonperturbative matching of the effective field theory describing dark matter interactions with quarks and gluons to the effective theory of nonrelativistic dark matter interacting with nonrelativistic nucleons. We give
We investigate a neutral gauge boson X originated from a hidden U(1) extension of the standard model as the particle dark matter candidate. The vector dark matter interacts with the standard model fermions through heavy fermion mediators. The interac