ﻻ يوجد ملخص باللغة العربية
Direct detection of light dark matter (DM), below the GeV scale, through electron recoil can be efficient if DM has a velocity well above the virial value of $vsim 10^{-3}$. We point out that if there is a long range attractive force sourced by bulk ordinary matter, i.e. baryons or electrons, DM can be accelerated towards the Earth and reach velocities $vsim 0.1$ near the Earths surface. In this attractive scenario, all DM will be boosted to high velocities by the time it reaches direct detection apparatuses in laboratories. Furthermore, the attractive force leads to an enhanced DM number density at the Earth facilitating DM detection even more. We elucidate the implications of this scenario for electron recoil direct detection experiments and find parameters that could lead to potential signals, while being consistent with stellar cooling and other bounds. Our scenario can potentially explain the recent excess in electron recoil signals reported by the XENON1T experiment in the $sim$ keV energy regime as well as the hint for non-standard stellar cooling.
We present a new class of direct detection signals; absorption of fermionic dark matter. We enumerate the operators through dimension six which lead to fermionic absorption, study their direct detection prospects, and summarize additional constraints
In this work we introduce RAPIDD, a surrogate model that speeds up the computation of the expected spectrum of dark matter particles in direct detection experiments. RAPIDD replaces the exact calculation of the dark matter differential rate (which in
We entertain the possibility that neutrino masses and dark matter (DM) originate from a common composite dark sector. A minimal effective theory can be constructed based on a dark $SU(3)_D$ interaction with three flavors of massless dark quarks; elec
The direct detection of sub-GeV dark matter interacting with nucleons is hampered by to the low recoil energies induced by scatterings in the detectors. This experimental difficulty is avoided in the scenario of boosted dark matter where a component
We propose a new strategy to directly detect light particle dark matter that has long-ranged interactions with ordinary matter. The approach involves distorting the local flow of dark matter with time-varying fields and measuring these distortions wi