ترغب بنشر مسار تعليمي؟ اضغط هنا

A hierarchical active-learning framework for classifying structural motifs in atomic resolution microscopy

81   0   0.0 ( 0 )
 نشر من قبل Duane Loh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Progress in functional materials discovery has been accelerated by advances in high throughput materials synthesis and by the development of high-throughput computation. However, a complementary robust and high throughput structural characterization framework is still lacking. New methods and tools in the field of machine learning suggest that a highly automated high-throughput structural characterization framework based on atomic-level imaging can establish the crucial statistical link between structure and macroscopic properties. Here we develop a machine learning framework towards this goal. Our framework captures local structural features in images with Zernike polynomials, which is demonstrably noise-robust, flexible, and accurate. These features are then classified into readily interpretable structural motifs with a hierarchical active learning scheme powered by a novel unsupervised two-stage relaxed clustering scheme. We have successfully demonstrated the accuracy and efficiency of the proposed methodology by mapping a full spectrum of structural defects, including point defects, line defects, and planar defects in scanning transmission electron microscopy (STEM) images of various 2D materials, with greatly improved separability over existing methods. Our techniques can be easily and flexibly applied to other types of microscopy data with complex features, providing a solid foundation for automatic, multiscale feature analysis with high veracity.



قيم البحث

اقرأ أيضاً

129 - Zhu Yang , Lei-Han Tang 2008
The structure of nanoclusters is complex to describe due to their noncrystallinity, even though bonding and packing constraints limit the local atomic arrangements to only a few types. A computational scheme is presented to extract coordination motif s from sample atomic configurations. The method is based on a clustering analysis of multipole moments for atoms in the first coodination shell. Its power to capture large-scale structural properties is demonstrated by scanning through the ground state of the Lennard-Jones and C$_{60}$ clusters collected at the Cambridge Cluster Database.
Recording atomic-resolution transmission electron microscopy (TEM) images is becoming increasingly routine. A new bottleneck is then analyzing this information, which often involves time-consuming manual structural identification. We have developed a deep learning-based algorithm for recognition of the local structure in TEM images, which is stable to microscope parameters and noise. The neural network is trained entirely from simulation but is capable of making reliable predictions on experimental images. We apply the method to single sheets of defected graphene, and to metallic nanoparticles on an oxide support.
We introduce the concept of time series motifs for time series analysis. Time series motifs consider not only the spatial information of mutual visibility but also the temporal information of relative magnitude between the data points. We study the p rofiles of the six triadic time series. The six motif occurrence frequencies are derived for uncorrelated time series, which are approximately linear functions of the length of the time series. The corresponding motif profile thus converges to a constant vector $(0.2,0.2,0.1,0.2,0.1,0.2)$. These analytical results have been verified by numerical simulations. For fractional Gaussian noises, numerical simulations unveil the nonlinear dependence of motif occurrence frequencies on the Hurst exponent. Applications of the time series motif analysis uncover that the motif occurrence frequency distributions are able to capture the different dynamics in the heartbeat rates of healthy subjects, congestive heart failure (CHF) subjects, and atrial fibrillation (AF) subjects and in the price fluctuations of bullish and bearish markets. Our method shows its potential power to classify different types of time series and test the time irreversibility of time series.
In machine learning (ML), it is in general challenging to provide a detailed explanation on how a trained model arrives at its prediction. Thus, usually we are left with a black-box, which from a scientific standpoint is not satisfactory. Even though numerous methods have been recently proposed to interpret ML models, somewhat surprisingly, interpretability in ML is far from being a consensual concept, with diverse and sometimes contrasting motivations for it. Reasonable candidate properties of interpretable models could be model transparency (i.e. how does the model work?) and post hoc explanations (i.e., what else can the model tell me?). Here, I review the current debate on ML interpretability and identify key challenges that are specific to ML applied to materials science.
Deep learning (DL) is an emerging analysis tool across sciences and engineering. Encouraged by the successes of DL in revealing quantitative trends in massive imaging data, we applied this approach to nano-scale deeply sub-diffractional images of pro pagating polaritonic waves in complex materials. We developed a practical protocol for the rapid regression of images that quantifies the wavelength and the quality factor of polaritonic waves utilizing the convolutional neural network (CNN). Using simulated near-field images as training data, the CNN can be made to simultaneously extract polaritonic characteristics and materials parameters in a timescale that is at least three orders of magnitude faster than common fitting/processing procedures. The CNN-based analysis was validated by examining the experimental near-field images of charge-transfer plasmon polaritons at Graphene/{alpha}-RuCl3 interfaces. Our work provides a general framework for extracting quantitative information from images generated with a variety of scanning probe methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا