ﻻ يوجد ملخص باللغة العربية
Progress in functional materials discovery has been accelerated by advances in high throughput materials synthesis and by the development of high-throughput computation. However, a complementary robust and high throughput structural characterization framework is still lacking. New methods and tools in the field of machine learning suggest that a highly automated high-throughput structural characterization framework based on atomic-level imaging can establish the crucial statistical link between structure and macroscopic properties. Here we develop a machine learning framework towards this goal. Our framework captures local structural features in images with Zernike polynomials, which is demonstrably noise-robust, flexible, and accurate. These features are then classified into readily interpretable structural motifs with a hierarchical active learning scheme powered by a novel unsupervised two-stage relaxed clustering scheme. We have successfully demonstrated the accuracy and efficiency of the proposed methodology by mapping a full spectrum of structural defects, including point defects, line defects, and planar defects in scanning transmission electron microscopy (STEM) images of various 2D materials, with greatly improved separability over existing methods. Our techniques can be easily and flexibly applied to other types of microscopy data with complex features, providing a solid foundation for automatic, multiscale feature analysis with high veracity.
The structure of nanoclusters is complex to describe due to their noncrystallinity, even though bonding and packing constraints limit the local atomic arrangements to only a few types. A computational scheme is presented to extract coordination motif
Recording atomic-resolution transmission electron microscopy (TEM) images is becoming increasingly routine. A new bottleneck is then analyzing this information, which often involves time-consuming manual structural identification. We have developed a
We introduce the concept of time series motifs for time series analysis. Time series motifs consider not only the spatial information of mutual visibility but also the temporal information of relative magnitude between the data points. We study the p
In machine learning (ML), it is in general challenging to provide a detailed explanation on how a trained model arrives at its prediction. Thus, usually we are left with a black-box, which from a scientific standpoint is not satisfactory. Even though
Deep learning (DL) is an emerging analysis tool across sciences and engineering. Encouraged by the successes of DL in revealing quantitative trends in massive imaging data, we applied this approach to nano-scale deeply sub-diffractional images of pro