ﻻ يوجد ملخص باللغة العربية
Imbalance issue is a major yet unsolved bottleneck for the current object detection models. In this work, we observe two crucial yet never discussed imbalance issues. The first imbalance lies in the large number of low-quality RPN proposals, which makes the R-CNN module (i.e., post-classification layers) become highly biased towards the negative proposals in the early training stage. The second imbalance stems from the unbalanced ground-truth numbers across different testing images, resulting in the imbalance of the number of potentially existing positive proposals in testing phase. To tackle these two imbalance issues, we incorporates two innovations into Faster R-CNN: 1) an R-CNN Gradient Annealing (RGA) strategy to enhance the impact of positive proposals in the early training stage. 2) a set of Parallel R-CNN Modules (PRM) with different positive/negative sampling ratios during training on one same backbone. Our RGA and PRM can totally bring 2.0% improvements on AP on COCO minival. Experiments on CrowdHuman further validates the effectiveness of our innovations across various kinds of object detection tasks.
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving, while accurate 3D object detection from this kind of data is very challenging. In this work, by intensive diagnosis experiments, we quantify the impac
Object proposals greatly benefit object detection task in recent state-of-the-art works. However, the existing object proposals usually have low localization accuracy at high intersection over union threshold. To address it, we apply saliency detecti
In this paper, we address several inadequacies of current video object segmentation pipelines. Firstly, a cyclic mechanism is incorporated to the standard semi-supervised process to produce more robust representations. By relying on the accurate refe
Modern object detection methods can be divided into one-stage approaches and two-stage ones. One-stage detectors are more efficient owing to straightforward architectures, but the two-stage detectors still take the lead in accuracy. Although recent w
The goal of object detection is to determine the class and location of objects in an image. This paper proposes a novel anchor-free, two-stage framework which first extracts a number of object proposals by finding potential corner keypoint combinatio