ﻻ يوجد ملخص باللغة العربية
Recent experiments have tuned the monolayer 1T-WTe2 to be superconducting by electrostatic gating. Here, we theoretically study the phonon-mediated superconductivity in monolayer 1T-WTe2 via charge doping. We reveal that the emergence of soft-mode phonons with specific momentum is crucial to give rise to the superconductivity in electron-doping regime, whereas no such soft-mode phonons and no superconductivity emerge in hole-doping regime. We also find a superconducting dome, which can be attributed to the change of Fermi surface nesting condition as electron doping. By taking into account the experimentally established strong anisotropy of temperature-dependent upper critical field H_{c2} between the in-plane and out-of-plane directions, we show that the superconducting state probably has the unconventional equal-spin-triplet pairing in A_{u} channel of C_{2h} point group. Our studies provide a promising understanding to the doping dependent superconductivity and strong anisotropy of H_{c2} in monolayer 1T-WTe2.
We have evaluated the total carrier mass enhancement factor f_{t} for MgB_{2} from two independent experiments (specific heat and upper critical field). These experiments consistently show that f_{t} = 3.1pm0.1. The unusually large f_{t} is incompati
Insight into why superconductivity in pristine and doped monolayer graphene seems strongly suppressed has been central for the recent years various creative approaches to realize superconductivity in graphene and graphene-like systems. We provide fur
Unconventional superconductivity is commonly linked to electronic pairing mechanisms, since it is believed that the conventional electron-phonon interaction (EPI) cannot cause sign-changing superconducting gap symmetries. Here, we show that this comm
The superconductor YB6 has the second highest critical temperature Tc among the boride family MBn. We report measurements of the specific heat, resistivity, magnetic susceptibility and thermal expansion from 2 to 300 K, using a single crystal with Tc
A quantum spin hall insulator(QSHI) is manifested by its conducting edge channels that originate from the nontrivial topology of the insulating bulk states. Monolayer 1T-WTe2 exhibits this quantized edge conductance in transport measurements, but bec