ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient and Phase-aware Video Super-resolution for Cardiac MRI

115   0   0.0 ( 0 )
 نشر من قبل Yu-Cheng Chang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Cardiac Magnetic Resonance Imaging (CMR) is widely used since it can illustrate the structure and function of heart in a non-invasive and painless way. However, it is time-consuming and high-cost to acquire the high-quality scans due to the hardware limitation. To this end, we propose a novel end-to-end trainable network to solve CMR video super-resolution problem without the hardware upgrade and the scanning protocol modifications. We incorporate the cardiac knowledge into our model to assist in utilizing the temporal information. Specifically, we formulate the cardiac knowledge as the periodic function, which is tailored to meet the cyclic characteristic of CMR. In addition, the proposed residual of residual learning scheme facilitates the network to learn the LR-HR mapping in a progressive refinement fashion. This mechanism enables the network to have the adaptive capability by adjusting refinement iterations depending on the difficulty of the task. Extensive experimental results on large-scale datasets demonstrate the superiority of the proposed method compared with numerous state-of-the-art methods.



قيم البحث

اقرأ أيضاً

This paper explores an efficient solution for Space-time Super-Resolution, aiming to generate High-resolution Slow-motion videos from Low Resolution and Low Frame rate videos. A simplistic solution is the sequential running of Video Super Resolution and Video Frame interpolation models. However, this type of solutions are memory inefficient, have high inference time, and could not make the proper use of space-time relation property. To this extent, we first interpolate in LR space using quadratic modeling. Input LR frames are super-resolved using a state-of-the-art Video Super-Resolution method. Flowmaps and blending mask which are used to synthesize LR interpolated frame is reused in HR space using bilinear upsampling. This leads to a coarse estimate of HR intermediate frame which often contains artifacts along motion boundaries. We use a refinement network to improve the quality of HR intermediate frame via residual learning. Our model is lightweight and performs better than current state-of-the-art models in REDS STSR Validation set.
Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution and ambiguous border (e.g., right ventricular endocardium), exis ting methods suffer from the degradation of accuracy and robustness in 3D cardiac MRI video segmentation. In this paper, we propose a novel Deformable U-Net (DeU-Net) to fully exploit spatio-temporal information from 3D cardiac MRI video, including a Temporal Deformable Aggregation Module (TDAM) and a Deformable Global Position Attention (DGPA) network. First, the TDAM takes a cardiac MRI video clip as input with temporal information extracted by an offset prediction network. Then we fuse extracted temporal information via a temporal aggregation deformable convolution to produce fused feature maps. Furthermore, to aggregate meaningful features, we devise the DGPA network by employing deformable attention U-Net, which can encode a wider range of multi-dimensional contextual information into global and local features. Experimental results show that our DeU-Net achieves the state-of-the-art performance on commonly used evaluation metrics, especially for cardiac marginal information (ASSD and HD).
Most recent video super-resolution (SR) methods either adopt an iterative manner to deal with low-resolution (LR) frames from a temporally sliding window, or leverage the previously estimated SR output to help reconstruct the current frame recurrentl y. A few studies try to combine these two structures to form a hybrid framework but have failed to give full play to it. In this paper, we propose an omniscient framework to not only utilize the preceding SR output, but also leverage the SR outputs from the present and future. The omniscient framework is more generic because the iterative, recurrent and hybrid frameworks can be regarded as its special cases. The proposed omniscient framework enables a generator to behave better than its counterparts under other frameworks. Abundant experiments on public datasets show that our method is superior to the state-of-the-art methods in objective metrics, subjective visual effects and complexity. Our code will be made public.
Real-time cardiac magnetic resonance imaging (MRI) plays an increasingly important role in guiding various cardiac interventions. In order to provide better visual assistance, the cine MRI frames need to be segmented on-the-fly to avoid noticeable vi sual lag. In addition, considering reliability and patient data privacy, the computation is preferably done on local hardware. State-of-the-art MRI segmentation methods mostly focus on accuracy only, and can hardly be adopted for real-time application or on local hardware. In this work, we present the first hardware-aware multi-scale neural architecture search (NAS) framework for real-time 3D cardiac cine MRI segmentation. The proposed framework incorporates a latency regularization term into the loss function to handle real-time constraints, with the consideration of underlying hardware. In addition, the formulation is fully differentiable with respect to the architecture parameters, so that stochastic gradient descent (SGD) can be used for optimization to reduce the computation cost while maintaining optimization quality. Experimental results on ACDC MICCAI 2017 dataset demonstrate that our hardware-aware multi-scale NAS framework can reduce the latency by up to 3.5 times and satisfy the real-time constraints, while still achieving competitive segmentation accuracy, compared with the state-of-the-art NAS segmentation framework.
The core problem of Magnetic Resonance Imaging (MRI) is the trade off between acceleration and image quality. Image reconstruction and super-resolution are two crucial techniques in Magnetic Resonance Imaging (MRI). Current methods are designed to pe rform these tasks separately, ignoring the correlations between them. In this work, we propose an end-to-end task transformer network (T$^2$Net) for joint MRI reconstruction and super-resolution, which allows representations and feature transmission to be shared between multiple task to achieve higher-quality, super-resolved and motion-artifacts-free images from highly undersampled and degenerated MRI data. Our framework combines both reconstruction and super-resolution, divided into two sub-branches, whose features are expressed as queries and keys. Specifically, we encourage joint feature learning between the two tasks, thereby transferring accurate task information. We first use two separate CNN branches to extract task-specific features. Then, a task transformer module is designed to embed and synthesize the relevance between the two tasks. Experimental results show that our multi-task model significantly outperforms advanced sequential methods, both quantitatively and qualitatively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا