ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuations of conserved charges, chiral spin symmetry and deconfinement in an SU(2)_color subgroup of SU(3)_color above T_c

234   0   0.0 ( 0 )
 نشر من قبل Leonid Glozman
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف L. Ya. Glozman




اسأل ChatGPT حول البحث

Above a pseudocritical temperature of chiral symmetry restoration T_c the energy and the pressure are very far from the quark-gluon-plasma limit (i.e. ideal gas of free quarks and gluons). At the same time very soon above T_c fluctuations of conserved charges behave as if quarks were free particles. Within the T_c - 3T_c interval a chiral spin symmetry emerges in QCD which is not consistent with free quarks and suggests that degrees of freedom are chirally symmetric quarks bound into the color-singlet objects by the chromoelectric field. Here we analyse temporal and spatial correlators in this interval and demonstrate that they indicate simultaneously the chiral spin symmetry as well as absence of the interquark interactions in channels constrained by a current conservation. The latter channels are responsible for both fluctuations of conserved charges and for dileptons. Assuming that a SU(2)_color subgroup of SU(3)_color is deconfined soon above T_c but confinement persits in SU(3)_color/SU(2)_color in the interval T_c - 3T_c we are able to reconcile all empirical facts listed above.



قيم البحث

اقرأ أيضاً

Recently, via calculation of spatial correlators of $J=0,1$ isovector operators using a chirally symmetric Dirac operator within $N_F=2$ QCD, it has been found that QCD at temperatures $T_c - 3 T_c$ is approximately $SU(2)_{CS}$ and $SU(4)$ symmetric . The latter symmetry suggests that the physical degrees of freedom are chirally symmetric quarks bound by the chromoelectric field into color singlet objects without chromomagnetic effects. This regime of QCD has been referred to as a Stringy Fluid. Here we calculate correlators for propagation in time direction at a temperature slightly above $T_c$ and find the same approximate symmetries. This means that the meson spectral function is chiral-spin and $SU(4)$ symmetric.
126 - L. Ya. Glozman 2020
The chiral magnetic effect (CME) is an exact statement that connects via the axial anomaly the electric current in a system consisting of interacting fermions and gauge field with chirality imbalance that is put into a strong external magnetic field. Experimental search of the magnetically induced current in QCD in heavy ion collisions above a pseudocritical temperature hints, though not yet conclusive, that the induced current is either small or vanishing. This would imply that the chirality imbalance in QCD above $T_c$ that could be generated via topological fluctuations is at most very small. Here we present the most general reason for absence (smallness) of the chirality imbalance in QCD above Tc. It was recently found on the lattice that QCD above Tc is approximately chiral spin (CS) symmetric with the symmetry breaking at the level of a few percent. The CS transformations mix the right- and left-handed components of quarks. Then an exact CS symmetry would require absence of any chirality imbalance. Consequently an approximate CS symmetry admits at most a very small chirality imbalance in QCD above Tc. Hence the absence or smallness of an magnetically induced current observed in heavy ion collisions could be considered as experimental evidence for emergence of the CS symmetry above Tc.
Next to leading order corrections to the $SU(3) times SU(3)$ Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is $psi_5(0) = (2.8 pm 0.3) times 10^{-3} GeV^{4}$, leading to the chiral corrections to GMOR: $delta_K = (55 pm 5)%$. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral $SU(2) times SU(2)$. Combining these results with our previous determination of the corrections to GMOR in chiral $SU(2) times SU(2)$, $delta_pi$, we are able to determine two low energy constants of chiral perturbation theory, i.e. $L^r_8 = (1.0 pm 0.3) times 10^{-3}$, and $H^r_2 = - (4.7 pm 0.6) times 10^{-3}$, both at the scale of the $rho$-meson mass.
Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energ y constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~cite{Alvarez-Ruso:2013fza}.
We extend the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model by introducing an effective four-quark vertex depending on Polyakov loop. The effective vertex generates entanglement interactions between Polyakov loop and chiral condensate. The n ew model is consistent with lattice QCD data at imaginary quark-number chemical potential and real and imaginary isospin chemical potentials, particularly on strong correlation between the chiral and deconfinement transitions and also on the quark-mass dependence of the order of the Roberge-Weiss endpoint predicted by lattice QCD very lately. We investigate an influence of the entanglement interactions on a location of the tricritical point at real isospin chemical potential and a location of the critical endpoint at real quark-number chemical potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا