ﻻ يوجد ملخص باللغة العربية
The magnetic polarisability is a fundamental property of hadrons, which provides insight into their structure in the low-energy regime. The pion magnetic polarisability is calculated using lattice QCD in the presence of background magnetic fields. The results presented are facilitated by the introduction of a new magnetic-field dependent quark-propagator eigenmode projector and the use of the background-field corrected clover fermion action. The magnetic polarisabilities are calculated in a relativistic formalism, and the excellent signal-to-noise property of pion correlation functions facilitates precise values.
Background field methods provide an important nonperturbative formalism for the determination of hadronic properties which are complementary to matrix-element calculations. However, new challenges are encountered when utilising a fermion action expos
Conventional hadron interpolating fields, which utilise gauge-covariant Gaussian smearing, are ineffective in isolating ground state nucleons in a uniform background magnetic field. There is evidence that residual Landau mode physics remains at the q
The COMPASS collaboration at CERN has investigated pion Compton scattering, $pi^-gammarightarrow pi^-gamma$, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $pi^-mathrm{Ni}rightarrowpi^-gamma;mathrm{Ni}$, which
The application of a uniform background magnetic field makes standard quark operators utilising gauge-covariant Gaussian smearing inefficient at isolating the ground state nucleon at nontrivial field strengths. In the absence of QCD interactions, Lan
Recent experimental data on tau decays are used to reconstruct the difference in hadronic spectral densities with vector and axial-vector quantum numbers. The saturation of Das-Mathur-Okubo and Weinberg sum rules is studied. Two methods of improving