ﻻ يوجد ملخص باللغة العربية
Conventional hadron interpolating fields, which utilise gauge-covariant Gaussian smearing, are ineffective in isolating ground state nucleons in a uniform background magnetic field. There is evidence that residual Landau mode physics remains at the quark level, even when QCD interactions are present. In this work, quark-level projection operators are constructed from the $SU(3) times U(1)$ eigenmodes of the two-dimensional lattice Laplacian operator associated with Landau modes. These quark-level modes are formed from a periodic finite lattice where both the background field and strong interactions are present. Using these eigenmodes, quark-propagator projection operators provides the enhanced hadronic energy-eigenstate isolation necessary for calculation of nucleon energy shifts in a magnetic field. The magnetic polarisability of both the proton and neutron is calculated using this method on the $32^3 times 64$ dynamical QCD lattices provided by the PACS-CS Collaboration. A chiral effective-field theory analysis is used to connect the lattice QCD results to the physical regime, obtaining magnetic polarisabilities of $beta^p = 2.79(22)({}^{+13}_{-18}) times 10^{-4}$ fm$^3$ and $beta^n = 2.06(26)({}^{+15}_{-20}) times 10^{-4}$ fm$^3$, where the numbers in parantheses describe statistical and systematic uncertainties.
The application of a uniform background magnetic field makes standard quark operators utilising gauge-covariant Gaussian smearing inefficient at isolating the ground state nucleon at nontrivial field strengths. In the absence of QCD interactions, Lan
The magnetic polarisability is a fundamental property of hadrons, which provides insight into their structure in the low-energy regime. The pion magnetic polarisability is calculated using lattice QCD in the presence of background magnetic fields. Th
This review focuses on the discussion of three key results of nucleon structure calculations on the lattice. These three results are the quark contribution to the nucleon spin, J_q, the nucleon-Delta transition form factors, and the nucleon axial cou
We introduce a stochastic sandwich method with low-mode substitution to evaluate the connected three-point functions. The isovector matrix elements of the nucleon for the axial-vector coupling $g_A^3$, scalar couplings $g_S^3$ and the quark momentum
The COMPASS collaboration at CERN has investigated pion Compton scattering, $pi^-gammarightarrow pi^-gamma$, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $pi^-mathrm{Ni}rightarrowpi^-gamma;mathrm{Ni}$, which