ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Transfer Dynamic Models of Underactuated Soft Robotic Hands

112   0   0.0 ( 0 )
 نشر من قبل Liam Schramm
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transfer learning is a popular approach to bypassing data limitations in one domain by leveraging data from another domain. This is especially useful in robotics, as it allows practitioners to reduce data collection with physical robots, which can be time-consuming and cause wear and tear. The most common way of doing this with neural networks is to take an existing neural network, and simply train it more with new data. However, we show that in some situations this can lead to significantly worse performance than simply using the transferred model without adaptation. We find that a major cause of these problems is that models trained on small amounts of data can have chaotic or divergent behavior in some regions. We derive an upper bound on the Lyapunov exponent of a trained transition model, and demonstrate two approaches that make use of this insight. Both show significant improvement over traditional fine-tuning. Experiments performed on real underactuated soft robotic hands clearly demonstrate the capability to transfer a dynamic model from one hand to another.



قيم البحث

اقرأ أيضاً

Meta continual learning algorithms seek to train a model when faced with similar tasks observed in a sequential manner. Despite promising methodological advancements, there is a lack of theoretical frameworks that enable analysis of learning challeng es such as generalization and catastrophic forgetting. To that end, we develop a new theoretical approach for meta continual learning~(MCL) where we mathematically model the learning dynamics using dynamic programming, and we establish conditions of optimality for the MCL problem. Moreover, using the theoretical framework, we derive a new dynamic-programming-based MCL method that adopts stochastic-gradient-driven alternating optimization to balance generalization and catastrophic forgetting. We show that, on MCL benchmark data sets, our theoretically grounded method achieves accuracy better than or comparable to that of existing state-of-the-art methods.
Networked robotic systems, such as connected vehicle platoons, can improve the safety and efficiency of transportation networks by allowing for high-speed coordination. To enable such coordination, these systems rely on networked communications. This can make them susceptible to cyber attacks. Though security methods such as encryption or specially designed network topologies can increase the difficulty of successfully executing such an attack, these techniques are unable to guarantee secure communication against an attacker. More troublingly, these security methods are unable to ensure that individual agents are able to detect attacks that alter the content of specific messages. To ensure resilient behavior under such attacks, this paper formulates a networked linear time-varying version of dynamic watermarking in which each agent generates and adds a private excitation to the input of its corresponding robotic subsystem. This paper demonstrates that such a method can enable each agent in a networked robotic system to detect cyber attacks. By altering measurements sent between vehicles, this paper illustrates that an attacker can create unstable behavior within a platoon. By utilizing the dynamic watermarking method proposed in this paper, the attack is detected, allowing the vehicles in the platoon to gracefully degrade to a non-communicative control strategy that maintains safety across a variety of scenarios.
This paper introduces recurrent equilibrium networks (RENs), a new class of nonlinear dynamical models for applications in machine learning, system identification and control. The new model class has ``built in guarantees of stability and robustness: all models in the class are contracting - a strong form of nonlinear stability - and models can satisfy prescribed incremental integral quadratic constraints (IQC), including Lipschitz bounds and incremental passivity. RENs are otherwise very flexible: they can represent all stable linear systems, all previously-known sets of contracting recurrent neural networks and echo state networks, all deep feedforward neural networks, and all stable Wiener/Hammerstein models. RENs are parameterized directly by a vector in R^N, i.e. stability and robustness are ensured without parameter constraints, which simplifies learning since generic methods for unconstrained optimization can be used. The performance and robustness of the new model set is evaluated on benchmark nonlinear system identification problems, and the paper also presents applications in data-driven nonlinear observer design and control with stability guarantees.
Wearable robots are undergoing a disruptive transition, from the rigid machines that populated the science-fiction world in the early eighties to lightweight robotic apparel, hardly distinguishable from our daily clothes. In less than a decade of dev elopment, soft robotic suits have achieved important results in human motor assistance and augmentation. In this paper, we start by giving a definition of soft robotic suits and proposing a taxonomy to classify existing systems. We then critically review the modes of actuation, the physical human-robot interface and the intention-detection strategies of state of the art soft robotic suits, highlighting the advantages and limitations of different approaches. Finally, we discuss the impact of this new technology on human movements, for both augmenting human function and supporting motor impairments, and identify areas that are in need of further development.
In this work, we report on the integrated sensorimotor control of the Pisa/IIT SoftHand, an anthropomorphic soft robot hand designed around the principle of adaptive synergies, with the BRL tactile fingertip (TacTip), a soft biomimetic optical tactil e sensor based on the human sense of touch. Our focus is how a sense of touch can be used to control an anthropomorphic hand with one degree of actuation, based on an integration that respects the hands mechanical functionality. We consider: (i) closed-loop tactile control to establish a light contact on an unknown held object, based on the structural similarity with an undeformed tactile image; and (ii) controlling the estimated pose of an edge feature of a held object, using a convolutional neural network approach developed for controlling other sensors in the TacTip family. Overall, this gives a foundation to endow soft robotic hands with human-like touch, with implications for autonomous grasping, manipulation, human-robot interaction and prosthetics. Supplemental video: https://youtu.be/ndsxj659bkQ

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا