ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA reveals the coherence of the magnetic field geometry in OH 231.8+4.2

76   0   0.0 ( 0 )
 نشر من قبل Laurence Sabin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a continuing effort to investigate the role of magnetic fields in evolved low and intermediate mass stars (principally regarding the shaping of their envelopes), we present new ALMA high resolution polarization data obtained for the nebula OH 231.8+4.2. We found that the polarized emission likely arises from aligned grains in the presence of magnetic fields rather than radiative alignment and self scattering. The ALMA data show well organized electric field orientations in most of the nebula and the inferred magnetic field vectors (rotated by 90 degrees) trace an hourglass morphology centred on the central system of the nebula. One region in the southern part of OH 231.8+4.2 shows a less organized distribution probably due to the shocked environment. These findings, in conjunction with earlier investigations (maser studies and dust emission analysis at other scales and wavelengths) suggest an overall magnetic hourglass located inside a toroidal field. We propose the idea that the magnetic field structure is closely related to the architecture of a magnetic tower and that the outflows were therefore magnetically launched. While the current dynamical effect of the fields might be weak in the equatorial plane principally due to the evolution of the envelope, it would still be affecting the outflows. In that regard, the measurement of the magnetic field at the stellar surface, which is still missing, combined with a full MHD treatment are required to better understand and constrain the events occurring in OH 231.8+4.2.



قيم البحث

اقرأ أيضاً

In order to investigate the characteristics and influence of the magnetic field in evolved stars, we performed a follow-up investigation of our previous submillimeter analysis of the proto-planetary nebula (PPN) OH 231.8+4.2 (Sabin et al. 2014), this time at 1.3mm with the CARMA facility in polarisation mode for the purpose of a multi-scale analysis. OH 231.8+4.2 was observed at ~2.5 resolution and we detected polarised emission above the 3-sigma threshold (with a mean polarisation fraction of 3.5 %). The polarisation map indicates an overall organised magnetic field within the nebula. The main finding in this paper is the presence of a structure mostly compatible with an ordered toroidal component that is aligned with the PPNs dark lane. We also present some alternative magnetic field configuration to explain the structure observed. These data complete our previous SMA submillimeter data for a better investigation and understanding of the magnetic field structure in OH 231.8+4.2.
Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are largely unexplored today. The high-mass star forming region G9.62+0.19 is a well known source, presenting several cores at different evolutionary stages. Aims. We determine the magnetic field morphology and strength in the high-mass star forming region G9.62+0.19, to investigate its relation to the evolutionary sequence of the cores. Methods. We use Band 7 ALMA observations in full polarisation mode and we analyse the polarised dust emission. We estimate the magnetic field strength via the Davis-Chandrasekhar-Fermi and the Structure Function methods. Results. We resolve several protostellar cores embedded in a bright and dusty filamentary structure. The polarised emission is clearly detected in six regions. Moreover the magnetic field is oriented along the filament and appears perpendicular to the direction of the outflows. We suggest an evolutionary sequence of the magnetic field, and the less evolved hot core exhibits a magnetic field stronger than the more evolved one. We detect linear polarisation from thermal line emission and we tentatively compared linear polarisation vectors from our observations with previous linearly polarised OH masers observations. We also compute the spectral index, the column density and the mass for some of the cores. Conclusions. The high magnetic field strength and the smooth polarised emission indicate that the magnetic field could play an important role for the fragmentation and the collapse process in the star forming region G9.62+019 and that the evolution of the cores can be magnetically regulated. On average, the magnetic field derived by the linear polarised emission from dust, thermal lines and masers is pointing in the same direction and has consistent strength.
We present continuum and molecular line emission ALMA observations of OH 231.8+4.2, a well studied bipolar nebula around an asymptotic giant branch (AGB) star. The high angular resolution (~0.2-0.3 arcsec) and sensitivity of our ALMA maps provide the most detailed and accurate description of the overall nebular structure and kinematics of this object to date. We have identified a number of outflow components previously unknown. Species studied in this work include 12CO, 13CO, CS, SO, SO2, OCS, SiO, SiS, H3O+, Na37Cl, and CH3OH. The molecules Na37Cl and CH3OH are first detections in OH 231.8+4.2, with CH3OH being also a first detection in an AGB star. Our ALMA maps bring to light the totally unexpected position of the mass-losing AGB star (QX Pup) relative to the large-scale outflow. QX Pup is enshrouded within a compact (<60 AU) parcel of dust and gas (clump S) in expansion (V~5-7 km/s) that is displaced by 0.6arcsec to the south of the dense equatorial region (or waist) where the bipolar lobes join. Our SiO maps disclose a compact bipolar outflow that emerges from QX Pups vicinity. This outflow is oriented similarly to the large-scale nebula but the expansion velocities are about ten times lower (~35 km/s). We deduce short kinematical ages for the SiO outflow, ranging from ~50-80 yr, in regions within ~150 AU, to ~400-500 yr at the lobe tips (~3500 AU). Adjacent to the SiO outflow, we identify a small-scale hourglass-shaped structure (mini-hourglass) that is probably made of compressed ambient material formed as the SiO outflow penetrates the dense, central regions of the nebula. The lobes and the equatorial waist of the mini-hourglass are both radially expanding with a constant velocity gradient. The mini-waist is characterized by extremely low velocities, down to ~1 km/s at ~150 AU, which tentatively suggest the presence of a stable structure. (abridged)
82 - Luis A. Zapata 2018
For a binary protostellar outflow system in which its members are located so close to each other (the separation being smaller than the addition of the widths of the flows) and with large opening angles, the collision seems unavoidable regardless of the orientation of the outflows. This is in contrast to the current observational evidence of just a few regions with indications of colliding outflows. Here, using sensitive observations of the Atacama Large Millimeter/Submillimeter Array (ALMA), we report resolved images of carbon monoxide (CO) towards the binary flows associated with the BHR71 protostellar system. These images reveal for the first time solid evidence that their flows are partially colliding, increasing the brightness of the CO, the dispersion of the velocities in the interaction zone, and changing part of the orientation in one of the flows. Additionally, this impact opened the possibility of knowing the 3D geometry of the system, revealing that one of its components (IRS2) should be closer to us.
We report results from twelve simulations of the collapse of a molecular cloud core to form one or more protostars, comprising three field strengths (mass-to-flux ratios, {mu}, of 5, 10, and 20) and four field geometries (with values of the angle bet ween the field and rotation axes, {theta}, of 0{deg}, 20{deg}, 45{deg}, and 90{deg}), using a smoothed particle magnetohydrodynamics method. We find that the values of both parameters have a strong effect on the resultant protostellar system and outflows. This ranges from the formation of binary systems when {mu} = 20 to strikingly differing outflow structures for differing values of {theta}, in particular highly suppressed outflows when {theta} = 90{deg}. Misaligned magnetic fields can also produce warped pseudo-discs where the outer regions align perpendicular to the magnetic field but the innermost region re-orientates to be perpendicular to the rotation axis. We follow the collapse to sizes comparable to those of first cores and find that none of the outflow speeds exceed 8 km s$^{-1}$. These results may place constraints on both observed protostellar outflows, and also on which molecular cloud cores may eventually form either single stars and binaries: a sufficiently weak magnetic field may allow for disc fragmentation, whilst conversely the greater angular momentum transport of a strong field may inhibit disc fragmentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا