ﻻ يوجد ملخص باللغة العربية
In a continuing effort to investigate the role of magnetic fields in evolved low and intermediate mass stars (principally regarding the shaping of their envelopes), we present new ALMA high resolution polarization data obtained for the nebula OH 231.8+4.2. We found that the polarized emission likely arises from aligned grains in the presence of magnetic fields rather than radiative alignment and self scattering. The ALMA data show well organized electric field orientations in most of the nebula and the inferred magnetic field vectors (rotated by 90 degrees) trace an hourglass morphology centred on the central system of the nebula. One region in the southern part of OH 231.8+4.2 shows a less organized distribution probably due to the shocked environment. These findings, in conjunction with earlier investigations (maser studies and dust emission analysis at other scales and wavelengths) suggest an overall magnetic hourglass located inside a toroidal field. We propose the idea that the magnetic field structure is closely related to the architecture of a magnetic tower and that the outflows were therefore magnetically launched. While the current dynamical effect of the fields might be weak in the equatorial plane principally due to the evolution of the envelope, it would still be affecting the outflows. In that regard, the measurement of the magnetic field at the stellar surface, which is still missing, combined with a full MHD treatment are required to better understand and constrain the events occurring in OH 231.8+4.2.
In order to investigate the characteristics and influence of the magnetic field in evolved stars, we performed a follow-up investigation of our previous submillimeter analysis of the proto-planetary nebula (PPN) OH 231.8+4.2 (Sabin et al. 2014), this
Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are largely unexplored today. The high-mass star forming region G9.62+0.19 is
We present continuum and molecular line emission ALMA observations of OH 231.8+4.2, a well studied bipolar nebula around an asymptotic giant branch (AGB) star. The high angular resolution (~0.2-0.3 arcsec) and sensitivity of our ALMA maps provide the
For a binary protostellar outflow system in which its members are located so close to each other (the separation being smaller than the addition of the widths of the flows) and with large opening angles, the collision seems unavoidable regardless of
We report results from twelve simulations of the collapse of a molecular cloud core to form one or more protostars, comprising three field strengths (mass-to-flux ratios, {mu}, of 5, 10, and 20) and four field geometries (with values of the angle bet