ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA Reveals A Collision Between Protostellar Outflows in BHR71

83   0   0.0 ( 0 )
 نشر من قبل Luis Zapata Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Luis A. Zapata




اسأل ChatGPT حول البحث

For a binary protostellar outflow system in which its members are located so close to each other (the separation being smaller than the addition of the widths of the flows) and with large opening angles, the collision seems unavoidable regardless of the orientation of the outflows. This is in contrast to the current observational evidence of just a few regions with indications of colliding outflows. Here, using sensitive observations of the Atacama Large Millimeter/Submillimeter Array (ALMA), we report resolved images of carbon monoxide (CO) towards the binary flows associated with the BHR71 protostellar system. These images reveal for the first time solid evidence that their flows are partially colliding, increasing the brightness of the CO, the dispersion of the velocities in the interaction zone, and changing part of the orientation in one of the flows. Additionally, this impact opened the possibility of knowing the 3D geometry of the system, revealing that one of its components (IRS2) should be closer to us.

قيم البحث

اقرأ أيضاً

The formation of stars is usually accompanied by the launching of protostellar outflows. Observations with the Atacama Large Millimetre/sub-millimetre Array (ALMA) will soon revolutionalise our understanding of the morphologies and kinematics of thes e objects. In this paper, we present synthetic ALMA observations of protostellar outflows based on numerical magnetohydrodynamic collapse simulations. We find significant velocity gradients in our outflow models and a very prominent helical structure within the outflows. We speculate that the disk wind found in the ALMA Science Verification Data of HD 163296 presents a first instance of such an observation.
We present Atacama Large Millimeter Array (ALMA) Band 6 observations at 14-20 au spatial resolution of the disk and CO(2-1) outflow around the Class I protostar DG Tau B in Taurus. The disk is very large, both in dust continuum (R$_{rm eff,95%}$=174 au) and CO (R$_{CO}$=700 au). It shows Keplerian rotation around a 1.1$pm$0.2 M$_{odot}$ central star and two dust emission bumps at $r$ = 62 and 135 au. These results confirm that large structured disks can form at an early stage where residual infall is still ongoing. The redshifted CO outflow at high velocity shows a striking hollow cone morphology out to 3000 au with a shear-like velocity structure within the cone walls. These walls coincide with the scattered light cavity, and they appear to be rooted within $<$ 60 au in the disk. We confirm their global average rotation in the same sense as the disk, with a specific angular momentum $simeq$ 65 au kms. The mass-flux rate of 1.7-2.9 $times$ 10$^{-7}$M$_{odot}$ yr$^{-1}$ is 35$pm$10 times that in the atomic jet. We also detect a wider and slower outflow component surrounding this inner conical flow, which also rotates in the same direction as the disk. Our ALMA observations therefore demonstrate that the inner cone walls, and the associated scattered light cavity, do not trace the interface with infalling material, which is shown to be confined to much wider angles ($> 70^{circ}$). The properties of the conical walls are suggestive of the interaction between an episodic inner jet or wind with an outer disk wind, or of a massive disk wind originating from 2-5 au. However, further modeling is required to establish their origin. In either case, such massive outflow may significantly affect the disk structure and evolution.
88 - Luis A. Zapata 2017
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion-ejection process in the star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al. (2009), and using $^{12}$CO(J=2-1) archival data from the Submillimeter Array (SMA), we contrast two well known explosive objects, Orion KL and DR21, to HH211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment there are only two well established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. Main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the red with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position i.e. the place where its exciting source was located, contrary to the bulk of the molecular material within the protostellar outflows.
We present results of 1.3 mm dust polarization observations toward 16 nearby, low-mass protostars, mapped with ~2.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with ou tflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotation axes of circumstellar disks, and that the outflows have not disrupted the fields in the surrounding material, then our results imply that the disks are not aligned with the fields in the cores from which they formed.
A search of the first Data Release of the VISTA Variables in the Via Lactea (VVV) Survey discovered the exceptionally red transient VVV-WIT-01 ($H-K_s=5.2$). It peaked before March 2010, then faded by $sim$9.5 mag over the following two years. The 1. 6--22 $mu$m spectral energy distribution in March 2010 was well fit by a highly obscured black body with $T sim 1000$ K and $A_{K_s} sim 6.6$ mag. The source is projected against the Infrared Dark Cloud (IRDC) SDC G331.062$-$0.294. The chance projection probability is small for any single event ($p approx 0.01$ to 0.02) which suggests a physical association, e.g. a collision between low mass protostars. However, black body emission at $T sim 1000$ K is common in classical novae (especially CO novae) at the infrared peak in the light curve, due to condensation of dust $sim$30--60 days after the explosion. Radio follow up with the Australia Telescope Compact Array (ATCA) detected a fading continuum source with properties consistent with a classical nova but probably inconsistent with colliding protostars. Considering all VVV transients that could have been projected against a catalogued IRDC raises the probability of a chance association to $p=0.13$ to 0.24. After weighing several options, it appears likely that VVV-WIT-01 was a classical nova event located behind an IRDC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا