ﻻ يوجد ملخص باللغة العربية
The $S=1/2$ square-lattice $J$-$Q$ model hosts a deconfined quantum phase transition between antiferromagnetic and dimerized (valence-bond solid) ground states. We here study two deformations of this model -- a term projecting staggered singlets as well as a modulation of the $J$ terms forming alternating staircases of strong and weak couplings. The first deformation preserves all lattice symmetries. Using quantum Monte Carlo simulations, we show that it nevertheless introduces a second relevant field, likely by producing topological defects. The second deformation induces helical valence-bond order. Thus, we identify the deconfined quantum critical point as a multicritical Lifshitz point -- the end point of the helical phase and also the end point of a line of first-order transitions. The helical-antiferromagnetic transitions form a line of generic deconfined quantum-critical points. These findings extend the scope of deconfined quantum criticality and resolve a previously inconsistent critical-exponent bound from the conformal-bootstrap method.
We use quantum Monte Carlo simulations to study a quantum $S=1/2$ spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid (cVBS) and a Neel antiferromagnet (AFM), as in the scenario
We present numerical evidence for the emergence of an extended valence bond solid (VBS) phase at $T=0$ in the kagome $S=1/2$ Heisenberg antiferromagnet with ferromagnetic further-neighbor interactions. The VBS is located at the boundary between two m
There is a number of contradictory findings with regard to whether the theory describing easy-plane quantum antiferromagnets undergoes a second-order phase transition. The traditional Landau-Ginzburg-Wilson approach suggests a first-order phase trans
It has been proposed that the deconfined criticality in $(2+1)d$ -- the quantum phase transition between a Neel anti-ferromagnet and a valence-bond-solid (VBS) -- may actually be pseudo-critical, in the sense that it is a weakly first-order transitio
We develop a nonequilibrium increment method to compute the Renyi entanglement entropy and investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantum Monte Carlo simulations. To benchmark the method, we first show