ترغب بنشر مسار تعليمي؟ اضغط هنا

Safeguarding MIMO Communications with Reconfigurable Metasurfaces and Artificial Noise

102   0   0.0 ( 0 )
 نشر من قبل George Alexandropoulos
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless communications empowered by Reconfigurable Intelligent (meta)Surfaces (RISs) are recently gaining remarkable research attention due to the increased system design flexibility offered by RISs for diverse functionalities. In this paper, we consider a Multiple Input Multiple Output (MIMO) physical layer security system with multiple data streams including one legitimate and one eavesdropping passive RISs, with the former being transparent to the eavesdropper and the latters presence being unknown at the legitimate link. We first focus on the eavesdropping subsystem and present a joint design framework for the eavesdroppers combining vector and the reflection coefficients of the eavesdropping RIS. Then, focusing on the secrecy rate maximization, we propose a physical layer security scheme that jointly designs the legitimate precoding vector and the Artificial Noise (AN) covariance matrix, as well as the legitimate combining vector and the reflection coefficients of the legitimate RIS. Our simulation results reveal that, in the absence of a legitimate RIS, transceiver spatial filtering and AN are incapable of offering nonzero secrecy rates, even for eavesdropping RISs with small numbers of elements. However, when a L-element legitimate RIS is deployed, confidential communication can be safeguarded against cases with even more than a 5L-element eavesdropping RIS.

قيم البحث

اقرأ أيضاً

The performance of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems is limited by the sparse nature of propagation channels and the restricted number of radio frequency (RF) chains at transceivers. The introduction of reconfigur able antennas offers an additional degree of freedom on designing mmWave MIMO systems. This paper provides a theoretical framework for studying the mmWave MIMO with reconfigurable antennas. Based on the virtual channel model, we present an architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital beamformers and reconfigurable antennas at both the transmitter and the receiver. We show that employing reconfigurable antennas can provide throughput gain for the mmWave MIMO. We derive the expression for the average throughput gain of using reconfigurable antennas in the system, and further derive the expression for the outage throughput gain for the scenarios where the channels are (quasi) static. Moreover, we propose a low-complexity algorithm for reconfiguration state selection and beam selection. Our numerical results verify the derived expressions for the throughput gains and demonstrate the near-optimal throughput performance of the proposed low-complexity algorithm.
This paper exploits the potential of physical layer security in massive multiple-input multiple-output (MIMO) aided two-tier heterogeneous networks (HetNets). We focus on the downlink secure transmission in the presence of multiple eavesdroppers. We first address the impact of massive MIMO on the maximum receive power based user association. We then derive the tractable upper bound expressions for the secrecy outage probability of a HetNets user.We show that the implementation of massive MIMO significantly improves the secrecy performance, which indicates that physical layer security could be a promising solution for safeguarding massive MIMO HetNets. Furthermore, we show that the secrecy outage probability of HetNets user first degrades and then improves with increasing the density of PBSs.
Physical layer security has been considered as an important security approach in wireless communications to protect legitimate transmission from passive eavesdroppers. This paper investigates the physical layer security of a wireless multiple-input m ultiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system in the presence of a multiple-antenna eavesdropper. We first propose a transmit-filter-assisted secure MIMO-OFDM system which can destroy the orthogonality of eavesdroppers signals. Our proposed transmit filter can disturb the reception of eavesdropper while maintaining the quality of legitimate transmission. Then, we propose another artificial noise (AN)-assisted secure MIMO-OFDM system to further improve the security of the legitimate transmission. The time-domain AN signal is designed to disturb the reception of eavesdropper while the legitimate transmission will not be affected. Simulation results are presented to demonstrate the security performance of the proposed transmit filter design and AN-assisted scheme in the MIMO-OFDM system.
Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit power consumption. In this paper, we propose a new type of RIS, called active RIS, where each RE is assisted by active loads (negative resistance), that reflect and amplify the incident signal instead of only reflecting it with the adjustable phase shift as in the case of a passive RIS. Therefore, for a given power budget at the RIS, a strengthened RIS-aided link can be achieved by increasing the number of active REs as well as amplifying the incident signal. We consider the use of an active RIS to a single input multiple output (SIMO) system. {However, it would unintentionally amplify the RIS-correlated noise, and thus the proposed system has to balance the conflict between the received signal power maximization and the RIS-correlated noise minimization at the receiver. To achieve this goal, it has to optimize the reflecting coefficient matrix at the RIS and the receive beamforming at the receiver.} An alternating optimization algorithm is proposed to solve the problem. Specifically, the receive beamforming is obtained with a closed-form solution based on linear minimum-mean-square-error (MMSE) criterion, while the reflecting coefficient matrix is obtained by solving a series of sequential convex approximation (SCA) problems. Simulation results show that the proposed active RIS-aided system could achieve better performance over the conventional passive RIS-aided system with the same power budget.
In diffusion-based communication, as for molecular systems, the achievable data rate is low due to the stochastic nature of diffusion which exhibits a severe inter-symbol-interference (ISI). Multiple-Input Multiple-Output (MIMO) multiplexing improves the data rate at the expense of an inter-link interference (ILI). This paper investigates training-based channel estimation schemes for diffusive MIMO (D-MIMO) systems and corresponding equalization methods. Maximum likelihood and least-squares estimators of mean channel are derived, and the training sequence is designed to minimize the mean square error (MSE). Numerical validations in terms of MSE are compared with Cramer-Rao bound derived herein. Equalization is based on decision feedback equalizer (DFE) structure as this is effective in mitigating diffusive ISI/ILI. Zero-forcing, minimum MSE and least-squares criteria have been paired to DFE, and their performances are evaluated in terms of bit error probability. Since D-MIMO systems are severely affected by the ILI because of short transmitters inter-distance, D-MIMO time interleaving is exploited as countermeasure to mitigate the ILI with remarkable performance improvements. The feasibility of a block-type communication including training and data equalization is explored for D-MIMO, and system-level performances are numerically derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا