ﻻ يوجد ملخص باللغة العربية
Message passing on a factor graph is a powerful paradigm for the coding of approximate inference algorithms for arbitrarily graphical large models. The notion of a factor graph fragment allows for compartmentalization of algebra and computer code. We show that the Inverse G-Wishart family of distributions enables fundamental variational message passing factor graph fragments to be expressed elegantly and succinctly. Such fragments arise in models for which approximate inference concerning covariance matrix or variance parameters is made, and are ubiquitous in contemporary statistics and machine learning.
The principal submatrix localization problem deals with recovering a $Ktimes K$ principal submatrix of elevated mean $mu$ in a large $ntimes n$ symmetric matrix subject to additive standard Gaussian noise. This problem serves as a prototypical exampl
We propose a general framework for solving the group synchronization problem, where we focus on the setting of adversarial or uniform corruption and sufficiently small noise. Specifically, we apply a novel message passing procedure that uses cycle co
Functional principal components analysis is a popular tool for inference on functional data. Standard approaches rely on an eigendecomposition of a smoothed covariance surface in order to extract the orthonormal functions representing the major modes
In statistical learning for real-world large-scale data problems, one must often resort to streaming algorithms which operate sequentially on small batches of data. In this work, we present an analysis of the information-theoretic limits of mini-batc
We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its