ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Meta Learning Framework for Feature Selection using Data Synthesis and Fuzzy Similarity

95   0   0.0 ( 0 )
 نشر من قبل Zixiao Shen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a novel meta learning framework for feature selection (FS) based on fuzzy similarity. The proposed method aims to recommend the best FS method from four candidate FS methods for any given dataset. This is achieved by firstly constructing a large training data repository using data synthesis. Six meta features that represent the characteristics of the training dataset are then extracted. The best FS method for each of the training datasets is used as the meta label. Both the meta features and the corresponding meta labels are subsequently used to train a classification model using a fuzzy similarity measure based framework. Finally the trained model is used to recommend the most suitable FS method for a given unseen dataset. This proposed method was evaluated based on eight public datasets of real-world applications. It successfully recommended the best method for five datasets and the second best method for one dataset, which outperformed any of the four individual FS methods. Besides, the proposed method is computationally efficient for algorithm selection, leading to negligible additional time for the feature selection process. Thus, the paper contributes a novel method for effectively recommending which feature selection method to use for any new given dataset.

قيم البحث

اقرأ أيضاً

In this paper, we propose a novel weighted combination feature selection method using bootstrap and fuzzy sets. The proposed method mainly consists of three processes, including fuzzy sets generation using bootstrap, weighted combination of fuzzy set s and feature ranking based on defuzzification. We implemented the proposed method by combining four state-of-the-art feature selection methods and evaluated the performance based on three publicly available biomedical datasets using five-fold cross validation. Based on the feature selection results, our proposed method produced comparable (if not better) classification accuracies to the best of the individual feature selection methods for all evaluated datasets. More importantly, we also applied standard deviation and Pearsons correlation to measure the stability of the methods. Remarkably, our combination method achieved significantly higher stability than the four individual methods when variations and size reductions were introduced to the datasets.
In this paper, based on a fuzzy entropy feature selection framework, different methods have been implemented and compared to improve the key components of the framework. Those methods include the combinations of three ideal vector calculations, three maximal similarity classifiers and three fuzzy entropy functions. Different feature removal orders based on the fuzzy entropy values were also compared. The proposed method was evaluated on three publicly available biomedical datasets. From the experiments, we concluded the optimized combination of the ideal vector, similarity classifier and fuzzy entropy function for feature selection. The optimized framework was also compared with other six classical filter-based feature selection methods. The proposed method was ranked as one of the top performers together with the Correlation and ReliefF methods. More importantly, the proposed method achieved the most stable performance for all three datasets when the features being gradually removed. This indicates a better feature ranking performance than the other compared methods.
Bayesian reinforcement learning (BRL) offers a decision-theoretic solution for reinforcement learning. While model-based BRL algorithms have focused either on maintaining a posterior distribution on models or value functions and combining this with a pproximate dynamic programming or tree search, previous Bayesian model-free value function distribution approaches implicitly make strong assumptions or approximations. We describe a novel Bayesian framework, Inferential Induction, for correctly inferring value function distributions from data, which leads to the development of a new class of BRL algorithms. We design an algorithm, Bayesian Backwards Induction, with this framework. We experimentally demonstrate that the proposed algorithm is competitive with respect to the state of the art.
When concept drift is detected during classification in a data stream, a common remedy is to retrain a frameworks classifier. However, this loses useful information if the classifier has learnt the current concept well, and this concept will recur ag ain in the future. Some frameworks retain and reuse classifiers, but it can be time-consuming to select an appropriate classifier to reuse. These frameworks rarely match the accuracy of state-of-the-art ensemble approaches. For many data stream tasks, speed is important: fast, accurate frameworks are needed for time-dependent applications. We propose the Enhanced Concept Profiling Framework (ECPF), which aims to recognise recurring concepts and reuse a classifier trained previously, enabling accurate classification immediately following a drift. The novelty of ECPF is in how it uses similarity of classifications on new data, between a new classifier and existing classifiers, to quickly identify the best classifier to reuse. It always trains both a new classifier and a reused classifier, and retains the more accurate classifier when concept drift occurs. Finally, it creates a copy of reused classifiers, so a classifier well-suited for a recurring concept will not be impacted by being trained on a different concept. In our experiments, ECPF classifies significantly more accurately than a state-of-the-art classifier reuse framework (Diversity Pool) and a state-of-the-art ensemble technique (Adaptive Random Forest) on synthetic datasets with recurring concepts. It classifies real-world datasets five times faster than Diversity Pool, and six times faster than Adaptive Random Forest and is not significantly less accurate than either.
A common approach for feature selection is to examine the variable importance scores for a machine learning model, as a way to understand which features are the most relevant for making predictions. Given the significance of feature selection, it is crucial for the calculated importance scores to reflect reality. Falsely overestimating the importance of irrelevant features can lead to false discoveries, while underestimating importance of relevant features may lead us to discard important features, resulting in poor model performance. Additionally, black-box models like XGBoost provide state-of-the art predictive performance, but cannot be easily understood by humans, and thus we rely on variable importance scores or methods for explainability like SHAP to offer insight into their behavior. In this paper, we investigate the performance of variable importance as a feature selection method across various black-box and interpretable machine learning methods. We compare the ability of CART, Optimal Trees, XGBoost and SHAP to correctly identify the relevant subset of variables across a number of experiments. The results show that regardless of whether we use the native variable importance method or SHAP, XGBoost fails to clearly distinguish between relevant and irrelevant features. On the other hand, the interpretable methods are able to correctly and efficiently identify irrelevant features, and thus offer significantly better performance for feature selection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا