ﻻ يوجد ملخص باللغة العربية
We focus here on the thermodynamic properties of adsorbates formed by two-species $A+B to oslash$ reactions on a one-dimensional infinite lattice with heterogeneous catalytic properties. In our model hard-core $A$ and $B$ particles undergo continuous exchanges with their reservoirs and react when dissimilar species appear at neighboring lattice sites in presence of a catalyst. The latter is modeled by supposing either that randomly chosen bonds in the lattice promote reactions (Model I) or that reactions are activated by randomly chosen lattice sites (Model II). In the case of annealed disorder in spatial distribution of a catalyst we calculate the pressure of the adsorbate by solving three-site (Model I) or four-site (Model II) recursions obeyed by the corresponding averaged grand-canonical partition functions. In the case of quenched disorder, we use two complementary approaches to find $textit{exact}$ expressions for the pressure. The first approach is based on direct combinatorial arguments. In the second approach, we frame the model in terms of random matrices; the pressure is then represented as an averaged logarithm of the trace of a product of random $3 times 3$ matrices -- either uncorrelated (Model I) or sequentially correlated (Model II).
We study equilibrium properties of catalytically-activated $A + A to oslash$ reactions taking place on a lattice of adsorption sites. The particles undergo continuous exchanges with a reservoir maintained at a constant chemical potential $mu$ and rea
Driven lattice gases as the ASEP are useful tools for the modeling of various stochastic transport processes carried out by self-driven particles, such as molecular motors or vehicles in road traffic. Often these processes take place in one-dimension
We employ Monte Carlo simulations to study the non-equilibrium relaxation of driven Ising lattice gases in two dimensions. Whereas the temporal scaling of the density auto-correlation function in the non-equilibrium steady state does not allow a prec
We discuss the scaling of the interaction energy with particle numbers for a harmonically trapped two-species mixture at thermal equilibrium experiencing interactions of arbitrary strength and range. In the limit of long-range interactions and weak c
We introduce a pair of time-reversible models defined on the discrete space-time lattice with 3 states per site, specifically, a vacancy and a particle of two flavours (species). The local update rules reproduce the rule 54 reversible cellular automa