ﻻ يوجد ملخص باللغة العربية
We employ Monte Carlo simulations to study the non-equilibrium relaxation of driven Ising lattice gases in two dimensions. Whereas the temporal scaling of the density auto-correlation function in the non-equilibrium steady state does not allow a precise measurement of the critical exponents, these can be accurately determined from the aging scaling of the two-time auto-correlations and the order parameter evolution following a quench to the critical point. We obtain excellent agreement with renormalization group predictions based on the standard Langevin representation of driven Ising lattice gases.
We numerically investigate the long-time behavior of the density-density auto-correlation function in driven lattice gases with particle exclusion and periodic boundary conditions in one, two, and three dimensions using precise Monte Carlo simulation
Properties of the one-dimensional totally asymmetric simple exclusion process (TASEP), and their connection with the dynamical scaling of moving interfaces described by a Kardar-Parisi-Zhang (KPZ) equation are investigated. With periodic boundary con
We study numerically the non-equilibrium critical properties of the Ising model defined on direct products of graphs, obtained from factor graphs without phase transition (Tc = 0). On this class of product graphs, the Ising model features a finite te
We introduce a model of interacting lattices at different resolutions driven by the two-dimensional Ising dynamics with a nearest-neighbor interaction. We study this model both with tools borrowed from equilibrium statistical mechanics as well as non
Driven lattice gases as the ASEP are useful tools for the modeling of various stochastic transport processes carried out by self-driven particles, such as molecular motors or vehicles in road traffic. Often these processes take place in one-dimension