ترغب بنشر مسار تعليمي؟ اضغط هنا

A systematic comparison of grapheme-based vs. phoneme-based label units for encoder-decoder-attention models

164   0   0.0 ( 0 )
 نشر من قبل Albert Zeyer
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Following the rationale of end-to-end modeling, CTC, RNN-T or encoder-decoder-attention models for automatic speech recognition (ASR) use graphemes or grapheme-based subword units based on e.g. byte-pair encoding (BPE). The mapping from pronunciation to spelling is learned completely from data. In contrast to this, classical approaches to ASR employ secondary knowledge sources in the form of phoneme lists to define phonetic output labels and pronunciation lexica. In this work, we do a systematic comparison between grapheme- and phoneme-based output labels for an encoder-decoder-attention ASR model. We investigate the use of single phonemes as well as BPE-based phoneme groups as output labels of our model. To preserve a simplified and efficient decoder design, we also extend the phoneme set by auxiliary units to be able to distinguish homophones. Experiments performed on the Switchboard 300h and LibriSpeech benchmarks show that phoneme-based modeling is competitive to grapheme-based encoder-decoder-attention modeling.

قيم البحث

اقرأ أيضاً

109 - Qiujia Li , David Qiu , Yu Zhang 2020
For various speech-related tasks, confidence scores from a speech recogniser are a useful measure to assess the quality of transcriptions. In traditional hidden Markov model-based automatic speech recognition (ASR) systems, confidence scores can be r eliably obtained from word posteriors in decoding lattices. However, for an ASR system with an auto-regressive decoder, such as an attention-based sequence-to-sequence model, computing word posteriors is difficult. An obvious alternative is to use the decoder softmax probability as the model confidence. In this paper, we first examine how some commonly used regularisation methods influence the softmax-based confidence scores and study the overconfident behaviour of end-to-end models. Then we propose a lightweight and effective approach named confidence estimation module (CEM) on top of an existing end-to-end ASR model. Experiments on LibriSpeech show that CEM can mitigate the overconfidence problem and can produce more reliable confidence scores with and without shallow fusion of a language model. Further analysis shows that CEM generalises well to speech from a moderately mismatched domain and can potentially improve downstream tasks such as semi-supervised learning.
This paper investigates an end-to-end neural diarization (EEND) method for an unknown number of speakers. In contrast to the conventional pipeline approach to speaker diarization, EEND methods are better in terms of speaker overlap handling. However, EEND still has a disadvantage in that it cannot deal with a flexible number of speakers. To remedy this problem, we introduce encoder-decoder-based attractor calculation module (EDA) to EEND. Once frame-wise embeddings are obtained, EDA sequentially generates speaker-wise attractors on the basis of a sequence-to-sequence method using an LSTM encoder-decoder. The attractor generation continues until a stopping condition is satisfied; thus, the number of attractors can be flexible. Diarization results are then estimated as dot products of the attractors and embeddings. The embeddings from speaker overlaps result in larger dot product values with multiple attractors; thus, this method can deal with speaker overlaps. Because the maximum number of output speakers is still limited by the training set, we also propose an iterative inference method to remove this restriction. Further, we propose a method that aligns the estimated diarization results with the results of an external speech activity detector, which enables fair comparison against pipeline approaches. Extensive evaluations on simulated and real datasets show that EEND-EDA outperforms the conventional pipeline approach.
Stream fusion, also known as system combination, is a common technique in automatic speech recognition for traditional hybrid hidden Markov model approaches, yet mostly unexplored for modern deep neural network end-to-end model architectures. Here, w e investigate various fusion techniques for the all-attention-based encoder-decoder architecture known as the transformer, striving to achieve optimal fusion by investigating different fusion levels in an example single-microphone setting with fusion of standard magnitude and phase features. We introduce a novel multi-encoder learning method that performs a weighted combination of two encoder-decoder multi-head attention outputs only during training. Employing then only the magnitude feature encoder in inference, we are able to show consistent improvement on Wall Street Journal (WSJ) with language model and on Librispeech, without increase in runtime or parameters. Combining two such multi-encoder trained models by a simple late fusion in inference, we achieve state-of-the-art performance for transformer-based models on WSJ with a significant WER reduction of 19% relative compared to the current benchmark approach.
284 - Sina Ahmadi 2018
Automatic spelling and grammatical correction systems are one of the most widely used tools within natural language applications. In this thesis, we assume the task of error correction as a type of monolingual machine translation where the source sen tence is potentially erroneous and the target sentence should be the corrected form of the input. Our main focus in this project is building neural network models for the task of error correction. In particular, we investigate sequence-to-sequence and attention-based models which have recently shown a higher performance than the state-of-the-art of many language processing problems. We demonstrate that neural machine translation models can be successfully applied to the task of error correction. While the experiments of this research are performed on an Arabic corpus, our methods in this thesis can be easily applied to any language.
We study the calibration of several state of the art neural machine translation(NMT) systems built on attention-based encoder-decoder models. For structured outputs like in NMT, calibration is important not just for reliable confidence with predictio ns, but also for proper functioning of beam-search inference. We show that most modern NMT models are surprisingly miscalibrated even when conditioned on the true previous tokens. Our investigation leads to two main reasons -- severe miscalibration of EOS (end of sequence marker) and suppression of attention uncertainty. We design recalibration methods based on these signals and demonstrate improved accuracy, better sequence-level calibration, and more intuitive results from beam-search.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا