ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrap prediction intervals with asymptotic conditional validity and unconditional guarantees

129   0   0.0 ( 0 )
 نشر من قبل Yunyi Zhang
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

It can be argued that optimal prediction should take into account all available data. Therefore, to evaluate a prediction intervals performance one should employ conditional coverage probability, conditioning on all available observations. Focusing on a linear model, we derive the asymptotic distribution of the difference between the conditional coverage probability of a nominal prediction interval and the conditional coverage probability of a prediction interval obtained via a residual-based bootstrap. Applying this result, we show that a prediction interval generated by the residual-based bootstrap has approximately 50% probability to yield conditional under-coverage. We then develop a new bootstrap algorithm that generates a prediction interval that asymptotically controls both the conditional coverage probability as well as the possibility of conditional under-coverage. We complement the asymptotic results with several finite-sample simulations.



قيم البحث

اقرأ أيضاً

The asymptotic behaviour of the commonly used bootstrap percentile confidence interval is investigated when the parameters are subject to linear inequality constraints. We concentrate on the important one- and two-sample problems with data generated from general parametric distributions in the natural exponential family. The focus of this paper is on quantifying the coverage probabilities of the parametric bootstrap percentile confidence intervals, in particular their limiting behaviour near boundaries. We propose a local asymptotic framework to study this subtle coverage behaviour. Under this framework, we discover that when the true parameters are on, or close to, the restriction boundary, the asymptotic coverage probabilities can always exceed the nominal level in the one-sample case; however, they can be, remarkably, both under and over the nominal level in the two-sample case. Using illustrative examples, we show that the results provide theoretical justification and guidance on applying the bootstrap percentile method to constrained inference problems.
Recently, Kabaila and Wijethunga assessed the performance of a confidence interval centred on a bootstrap smoothed estimator, with width proportional to an estimator of Efrons delta method approximation to the standard deviation of this estimator. Th ey used a testbed situation consisting of two nested linear regression models, with error variance assumed known, and model selection using a preliminary hypothesis test. This assessment was in terms of coverage and scaled expected length, where the scaling is with respect to the expected length of the usual confidence interval with the same minimum coverage probability. They found that this confidence interval has scaled expected length that (a) has a maximum value that may be much greater than 1 and (b) is greater than a number slightly less than 1 when the simpler model is correct. We therefore ask the following question. For a confidence interval, centred on the bootstrap smoothed estimator, does there exist a formula for its data-based width such that, in this testbed situation, it has the desired minimum coverage and scaled expected length that (a) has a maximum value that is not too much larger than 1 and (b) is substantially less than 1 when the simpler model is correct? Using a recent decision-theoretic performance bound due to Kabaila and Kong, it is shown that the answer to this question is `no for a wide range of scenarios.
We propose two types of Quantile Graphical Models (QGMs) --- Conditional Independence Quantile Graphical Models (CIQGMs) and Prediction Quantile Graphical Models (PQGMs). CIQGMs characterize the conditional independence of distributions by evaluating the distributional dependence structure at each quantile index. As such, CIQGMs can be used for validation of the graph structure in the causal graphical models (cite{pearl2009causality, robins1986new, heckman2015causal}). One main advantage of these models is that we can apply them to large collections of variables driven by non-Gaussian and non-separable shocks. PQGMs characterize the statistical dependencies through the graphs of the best linear predictors under asymmetric loss functions. PQGMs make weaker assumptions than CIQGMs as they allow for misspecification. Because of QGMs ability to handle large collections of variables and focus on specific parts of the distributions, we could apply them to quantify tail interdependence. The resulting tail risk network can be used for measuring systemic risk contributions that help make inroads in understanding international financial contagion and dependence structures of returns under downside market movements. We develop estimation and inference methods for QGMs focusing on the high-dimensional case, where the number of variables in the graph is large compared to the number of observations. For CIQGMs, these methods and results include valid simultaneous choices of penalty functions, uniform rates of convergence, and confidence regions that are simultaneously valid. We also derive analogous results for PQGMs, which include new results for penalized quantile regressions in high-dimensional settings to handle misspecification, many controls, and a continuum of additional conditioning events.
We consider a linear regression model, with the parameter of interest a specified linear combination of the regression parameter vector. We suppose that, as a first step, a data-based model selection (e.g. by preliminary hypothesis tests or minimizin g AIC) is used to select a model. It is common statistical practice to then construct a confidence interval for the parameter of interest based on the assumption that the selected model had been given to us a priori. This assumption is false and it can lead to a confidence interval with poor coverage properties. We provide an easily-computed finite sample upper bound (calculated by repeated numerical evaluation of a double integral) to the minimum coverage probability of this confidence interval. This bound applies for model selection by any of the following methods: minimum AIC, minimum BIC, maximum adjusted R-squared, minimum Mallows Cp and t-tests. The importance of this upper bound is that it delineates general categories of design matrices and model selection procedures for which this confidence interval has poor coverage properties. This upper bound is shown to be a finite sample analogue of an earlier large sample upper bound due to Kabaila and Leeb.
The success of the Lasso in the era of high-dimensional data can be attributed to its conducting an implicit model selection, i.e., zeroing out regression coefficients that are not significant. By contrast, classical ridge regression can not reveal a potential sparsity of parameters, and may also introduce a large bias under the high-dimensional setting. Nevertheless, recent work on the Lasso involves debiasing and thresholding, the latter in order to further enhance the model selection. As a consequence, ridge regression may be worth another look since -- after debiasing and thresholding -- it may offer some advantages over the Lasso, e.g., it can be easily computed using a closed-form expression. % and it has similar performance to threshold Lasso. In this paper, we define a debiased and thresholded ridge regression method, and prove a consistency result and a Gaussian approximation theorem. We further introduce a wild bootstrap algorithm to construct confidence regions and perform hypothesis testing for a linear combination of parameters. In addition to estimation, we consider the problem of prediction, and present a novel, hybrid bootstrap algorithm tailored for prediction intervals. Extensive numerical simulations further show that the debiased and thresholded ridge regression has favorable finite sample performance and may be preferable in some settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا